TRAFFIC ACCIDENT INVESTIGATORS' AND RECONSTRUCTIONISTS' BOOK OF FORMULAE AND TABLES

.

SECOND EDITION

TRAFFIC ACCIDENT INVESTIGATORS' AND RECONSTRUCTIONISTS' BOOK OF FORMULAE AND TABLES

By

R. W. RIVERS

Inspector Traffic Branch Royal Canadian Mounted Police (Retired)

Published and Distributed Throughout the World by

CHARLES C THOMAS • PUBLISHER, LTD. 2600 South First Street Springfield, Illinois 62704

This book is protected by copyright. No part of it may be reproduced in any manner without written permission from the publisher.

© 1999 by CHARLES C THOMAS • PUBLISHER, LTD.

ISBN 0-398-06972-7

Library of Congress Catalog Card Number: 99-21209

With THOMAS BOOKS careful attention is given to all details of manufacturing and design. It is the Publisher's desire to present books that are satisfactory as to their physical qualities and artistic possibilities and appropriate for their particular use. THOMAS BOOKS will be true to those laws of quality that assure a good name and good will.

Printed in the United States of America SM-R-3

Library of Congress Cataloging-in-Publication Data Rivers, R. W. (Robert W.)

Traffic accident investigators' and reconstructionists' book of formulae and tables / by R.W. Rivers. -- 2nd ed.

p. cm.

Rev. ed. of: Traffic accident investigators' book of formulae and tables. c1981.

Includes bibliographical references (p. 109) and index. ISBN 0-398-06972-7 (spiral : paper)

1. Traffic accident investigation. 2. Traffic accidents--Mathematical models. 3. Traffic accidents--Tables. I. Rivers, R. W. (Robert W.). Traffic accident investigators' book of formulae and tables. II. Title. HV8079.55.R59 1999

363.12'565--dc21

99-21209 CIP

INTRODUCTION

This book contains a summary of formulae and tables commonly required and used in traffic and investigation and reconstruction. In many cases, alternative problem-solving formulae to accommodate various known data are presented. These formulae also provide a means of checking the accuracy of one answer against others using the alternative data and alternate approaches available in problem-solving.

To use this manual in problem-solving, the investigator should decide upon what is the problem or what is to be determined, e.g., a speed determination (S), a time factor (t), and so on. To arrive at or to calculate the answer, the investigator should then determine what information is available to assist in finding the answer. Once this information is decided upon, the investigator should then go to the specific chapter covering the problem to be answered, such as the Slide-to-a-Stop Speed chapter. The symbol relating to what must be solved will always be on the left side of the formulae, generally to the left side of the equal (=) sign. An example is the speed from skid marks formula: $S = \sqrt{30} df$. Here the problem to be solved is the speed of an accident vehicle based on skid marks. The symbols to the right (very often inside a radical) indicate the information that must be known in order to calculate the answer. In this example, the distance or length of skid (d) and the drag factor (f) must be known in order to calculate the speed (S).

v

THE METRIC (S.I.) SYSTEM

The metric system, called SI, is from the French name Le Système International d'Unites. Most countries outside the United States use the metric system (S.I.), but practitioners in these countries very often use reference materials published in the United States. Continuing with the precedent established by the first edition, this work is prepared for use on an international basis. That is to say, all mathematical formulae and problem-solving examples are shown in both the United States/Imperial or English and Metric (S.I.) systems.

In North America, a decimal fraction is generally indicated by means of a (decimal) point on the line (not a dot in the raised or centered position). In this regard, caution is important for North Americans and many others in reading the various literature that in some countries it is the dot in the raised position that is used, and in some countries it is the comma. The North American practice of using the dot as a decimal point situated on the line is followed in this manual.

To assist the reader and to avoid confusion, precise conversions from one system to the other, conversion factors and constants will be found throughout the book, particularly in the appendices where specific conversion tables will be found.

vii

DISCLAIMER

Many published books and technical papers have been stud-ied and participation in many field tests made in the preparation of this book of formulae and tables. The information and practices set out herein are, to best of the author's knowledge, experience, and belief, the most current and accurate in the traffic accident investigation and reconstruction profession. However, the author, publisher, and editors expressly disclaim all and any liability to any person, whether a purchaser of this publication or not, as a consequence of anything stated, done or omitted to be done, whether in whole or in part by such person in reliance upon any part of the contents of this publication. Every acceptable procedure may not be presented herein, and some of the circumstances of a given case may require additional or substitute procedures. Also, since statutes, ordinances, and organizational policies and procedures differ widely in various jurisdictions, those of the particular jurisdiction should govern when there is any conflict between them and the contents of this book.

CONTENTS

		Page
Introd	uction	v
Chapt	er	
1.	SYMBOLS	3
2.	ACCELERATION	7
	Definition	7
	Acceleration Due to Gravity	7
	Acceleration Factor	7
	Acceleration Factor Defined	7
	Acceleration Factor for a Vehicle That Accelerates	
	from a Lower Speed or Velocity to a Higher Speed	
	or Velocity during a Known Time	8
	Deceleration Factor for Vehicle That Slows from a	
	Higher Speed to a Lower Speed Over Known	
	Distance	8
	Deceleration Factor for a Vehicle that Decelerates from	
	a Higher Speed or Velocity to a Lower Speed or	
	Velocity During a Known Time	9
	Acceleration/Deceleration Factor When Velocity	
	and Time Are Known	9
	Acceleration/Deceleration Factor When Acceleration/	
	Deceleration Rate and Acceleration Due to	
	Gravity Are Known	9
	Acceleration/Deceleration Factor When the Final	
	Velocity or Speed and the Time Required to Reach	
	the Final Velocity or Speed Are Known, and When	
	a Vehicle Starts from a Stop or Slides or Skids to a	
	Stop	10
	Acceleration/Deceleration Factor When the Vehicle	
	Starts From a Stop or Slows to a Stop and the	
	Distance and Time During Acceleration/Deceleration	
	Are Known	10

ix

	Acceleration/Deceleration Factor for a Vehicle That	
	Accelerates from a Known Speed or Velocity Over	
	a Known Distance and Time	11
	Acceleration or Deceleration Factor When a Vehicle	
	Starts from a Stop and Accelerates to a Known Speed,	
	or Decelerates from a Known Speed to a Stop Over a	
	Known Distance	11
	Lateral Acceleration Factor	11
	Acceleration/Deceleration Rate	12
	Acceleration Rate When Initial or Final Velocity Is	
	Other than Zero	12
	Deceleration Rate If Original or Final Velocity Is	
	Other Than Zero	12
	Acceleration/Deceleration Rate When Speed Lost	
	or Gained and Time Are Known	13
	Acceleration Rate When Distance Traveled and Time	
	Are Known	13
	Acceleration or Deceleration Rate When the Original	
	or Final Velocity Is Zero and When Time Is Known	13
	Acceleration/Deceleration Rate When Initial Velocity	
	and Velocity at Any Point Are Known	13
	Deceleration Rate Based on Roadway Coefficient of	
	Friction or Drag Factor	14
3.	CENTER OF MASS	15
	Calculating Center of Mass.	17
4.	DRAG FACTOR AND COEFFICIENT OF	
	FRICTION	21
	Definitions	21
	Coefficient of Friction and Drag Factor Formulae	22
	Drag Factor/Coefficient of Friction When Weight of	
	Unit (e.g., Drag Sled) and Force (Pull) Are Known	22
	Drag Factor or Coefficient of Friction From Test Skid	
	Marks When Vehicle Skids to a Stop Over a Known	
	Distance	22
	Drag Sled (Force/Pull) Accuracy Check	23
	Accuracy Check for f or μ Values	23
	Motorcycle Drag Factors	23
	Roadway Coefficient of Friction (Drag Factor) Guide	24
5.	SLIDE-TO-STOP SPEED	26

Contents

General Formula for Calculating Speed Based on the Length of Skid Marks or the Length of a Slide by an	
Object Over a Surface	26
Slide-to-Stop Speed Involving Braking Efficiency or	
Capability	26
Slide-to-Stop Speed Involving Braking Efficiency and	
Grade or Superelevation	27
Slide-to-Stop Speed Involving Uphill Grade of 10	
percent or Less	27
Slide-to-Stop Speed Involving Uphill Grade Greater	
than 10 percent	27
Slide-to-Stop Speed Involving Uphill Grade Greater	
than 10 percent With Roadway Surface of Pea Gravel	
Type, e.g., Unpaved Truck Runaway Ramps	28
Slide-to-Stop Speed Involving Downhill Grade of	
10 percent or Less	28
Slide-to-Stop Speed Involving a Grade Greater than	
10 percent (\pm)	28
Slide-to-Stop Speed Across Various Type Surfaces	29
Slide-to-Stop Speed When Each Side of Vehicle is	
on a Different Type of Surface	29
Skid-to-a-Stop Where Right and Left Wheels Are on	
Different-Type Roadway Surfaces and Where There	
Are Different Braking Efficiencies	29
Skid-to-a-Stop Where Right and Left Wheels Are on	
Different-Type Roadway Surfaces with Grade and	
Where There Are Different Braking Efficiencies	30
Speed Attained After Accelerating from a Stop or	
Decelerating to a Stop; or a Speed Loss, When	
Distance and the Acceleration/Deceleration	
Factor Are Known	30
YAW, SIDESLIP OR CRITICAL CURVE SPEED	31
Definition	31
Level surface	31
When e Is Plus or Minus (\pm) 10 Percent or Less	31
When e Exceeds Plus (+) 10 Percent	31
When e Exceeds Minus (-) 10 Percent	31
FALL, FLIP AND VAULT SPEEDS	34
Fall Speeds	34

6.

7.

	Takeoff and Fall Speed When Takeoff Area is Level	34
	Takeoff and Fall Speed When Takeoff Area Has a Plus	
	or Minus (\pm) Grade (m) Not Exceeding 10 Percent	35
	Takeoff and Fall Speed Involving Any Downhill Takeoff	
	Angle, Including those Having a Grade Exceeding	
	Minus (-) 10 Percent degrees	35
	General Vault Speeds	36
	Flip and Vault Speeds	37
	Flip and Vault Takeoff Speed When Takeoff and	
	Landing Are at the Same Level	37
	Flip and Vault Takeoff Speed When Landing Is	
	Either Above or Below the Point of Takeoff	38
	Speed of Vehicle or Other Airborne Object at the	
	Time It Becomes Airborne	39
8.	KINETIC ENERGY AND SPEED	40
9.	WEIGHT SHIFT AND SPEED	42
	Weight Shift	42
	Weight Shift from Rear Axle to Front Axle	42
	Weight Shift Speed	43
	Speed Calculation Involving Weight Shift During	
	Braking or Deceleration	43
10.	TIP AND ROLLOVER SPEED	44
	Level Roadway	44
	Critical Velocity or Speed at Which a Vehicle Can	
	Negotiate a Curve Involving a Level Roadway	
	Without Overturning	44
	Curve with Bank or Superelevation	45
	Critical Speed at Which a Vehicle Can Negotiate a Curve	
	Involving Superelevation Without Overturning	45
	Lateral Acceleration Factor	45
	Lateral Acceleration Factor Where Vehicle Will	
	Sideslip But Not Tip Over	45
	Angular Velocity at Which Vehicle Will Overturn	
	Rather than Spin Out on Level Surface	46
11.	HYDROPLANING SPEED	47
12.	VELOCITY, SPEED, ACCELERATION,	
	DISTANCE AND TIME	48
	Conversions	48
	Converting Speed in mph (km/h) to Velocity in ft/s (m/s)	48

	Contents	xiii
	Converting Velocity in ft/s (m/s) to Speed in mph (km/h) Calculations Involving Speed, Velocity, Acceleration,	48
	Distance and Time Factors	49
	Speed at Any Point During Acceleration or Deceleration	
	when Initial Speed, Distance and Drag Factor or	10
	Acceleration Factor Are Known	49
	Velocity at Any Time During Acceleration or Deceleration	
	When the Initial Velocity, Acceleration or Deceleration	40
	Kate and Time Are Known	49
	Velocity Gained or Lost When Acceleration or	~ ^
	Deceleration Rate and Time Are Known	50
	Speed at Any Time During Acceleration from a Stop	
	When Acceleration Rate Is Known	50
	Velocity After Acceleration from a Stop	50
	Velocity at Any Distance, or Final Velocity, During	
	Acceleration or Deceleration When Acceleration or	
	Deceleration Rate and Distance Are Known	50
	Average Speed or Velocity When Time and Distance	
	Are Known	51
13.	MOMENTUM SPEED ANALYSIS	52
	Definition	52
	360-Degree Momentum Speed Analysis	53
14.	COMBINED SPEEDS	58
	Combining Speed Calculation Where the Initial Speed	
	is Based on a Combination of Two Separately	
	Calculated Speeds	58
	Complex Combined Speed Calculation Where the Initial	
	Speed Is Based on a Combination of Greater than Two	
	Speeds	59
	One-Step Combined Speed Calculation Involving Vehicle	
	Skid on Various Surfaces and One Additional Speed	59
15.	DISTANCE	61
	Distance When Velocity and Time Known	61
	Distance Traveled at a Constant Velocity or Speed in	
	a Known Time Period	61
	Distance Traveled When Initial Speed, Acceleration	
	Factor and Time Are Known	62
	Distance Required to Stop or to Accelerate from a Stop	
	When the Drag Factor, Coefficient of friction or	

	Acceleration Factor (±) and Speed Are Known	62
	Lesser Speed When Those Speeds and the	
	Deceleration Factor Are Known	63
	Distance a Vehicle Will Travel in a Given Time Period	
	When the Initial Velocity or Speed and the	
	Acceleration Factor or Rate (\pm) Are Known	63
	Distance Required to Travel from or to a Stop When	
	Acceleration Factor or Rate (±) and Time Are Known	64
16.	TIME	65
	Time to Travel a Known Distance at a Known Velocity	
	or Speed	65
	Time to Decelerate from Initial Velocity or Speed to	
	a Lesser Velocity or Speed When the Initial and Final	
	Velocities or Speeds and Drag Factor, Deceleration	
	Rate or Deceleration Factor Are Known	65
	Time to Accelerate from Initial Velocity or Speed to a	
	Greater Velocity or Speed When the Initial and Final	
	Velocities or Speeds and Acceleration Rate or	
	Acceleration Factor Are Known	66
	Time to Accelerate (\pm) from or to a Stop to a Given	
	Velocity When Initial or Final Speed or Velocity, and	
	Either the Acceleration Rate (\pm) or the Drag Factor	
	and Acceleration Due to Gravity Are Known	66
	Time to Decelerate to a Stop or Accelerate from a Stop	
	When Distance and Acceleration Factor or	
	Deceleration Factor Are Known	67
17.	MISCELLANEOUS FORMULAE	68
	Radius and Circumference	68
	Circumference When Radius or Diameter of Circle	
	Is Known	68
	Diameter When Circumference Is Known	70
	Radius of Circle, Curve or Arc	70
	Speedometer Accuracy Test	70
	Grade and Superelevation	71
	Tangent Offset	71
	Motorcycle	71
	Motorcycle Lean Angle	71
	Cycle and Pedestrian Accidents	72

Contents	xv
Mass	73
Weight	73
Weight and Mass	73
Force	74
Work	74
Kinetic Energy (Rotary Motion)	75
Angular Acceleration	75
Angular Velocity (Rotational Motion)	75
Moment of Inertia	76
Torque	76
Pressure	76
Temperature Conversion	77
Quadratic Equation	77
ADDENINIY A ENCLICH (ILC) AND METDIC (CL)	
MEASUDEMENT SYSTEMS CONVEDSION TABLES	70
MEASUREMENT SISTEMS CONVERSION TABLES	79
A 1 Unit Designations and Abbreviations	70
A-1. Unit Designations and Abbreviations	79 01
A-2. Distance, speed and velocity conversion fable	01
A-3. Ellear Relationships	02 80
A-4. Velocity and Speed Kelauonships	02 02
A-5. Commonly-Used Constants $A_{1}6$ Acceleration f_{1}/c and r_{2}/c	00 00
A-0. Acceleration IUs and II/s	0J 01
A-7. Acceleration Due to Gravity	04 04
A O Maish	04 04
A-9. Weight	04 95
A-10. Volume	0J 05
A 19 Earce Device Dreasure Encours on Work	80 86
A 12. Momentum	80 86
A 14 Homeneum	80 86
A 15 Torrest	80 86
A-16. Internetional Neutral Miles and Kilematers	80 97
A-10. International Nautical Miles and Kilometers	07 07
A-17. Speed of Sound in Air	87
A-18. Speed of Light	8/
APPENDIA B. ENGLISH (U.S.) CONVERSION IABLES	89
Idole D.1. Miles Des Hannets Fred De Consert Consert This	00
B-1. Miles-rer-Hour to Feet-Per-Second Conversion lable	90
B-2. Coefficient of Friction to Deceleration Rate in	

Book of Formulae and Tables

	Feet-Per-Second-Per-Second Conversion Table	91			
B -3.	3-3. Inches-to-Centimeters Conversion Table				
B-4.	B-4. Feet-to-Meters Conversion Table				
B-5.	B-5. Miles-to-Kilometers Conversion Table				
APPENDE	X C. METRIC (S.I.) CONVERSION TABLES	95			
Table					
C-1.	Kilometers-Per-Hour to Meters-Per-Second				
	Conversion Table	96			
C-2.	Coefficient of Friction to Deceleration Rate in Meters-				
	Per-Second Conversion Table	98			
C-3.	C-3. Centimeters-to-Inches Conversion Table 9				
C-4. Meters-to-Feet Conversion Table 10					
C-5. Kilometers-to-Miles Conversion Table					
APPENDI	CES D AND E. MATHEMATICAL TABLES	103			
Table					
D-1.	Table of Trigonometric Ratios	104			
E-1.	Squares and Square Roots	106			
APPENDI	X F. SPEEDOMETER ACCURACY	107			
Table					
F-1.	Speedometer Accuracy Checklist	108			
Bibliography		109			
Index		111			

xvi

TRAFFIC ACCIDENT INVESTIGATORS' AND RECONSTRUCTIONISTS' BOOK OF FORMULAE AND TABLES

Chapter 1

SYMBOLS

T he following table provides a ready reference of symbols, with descriptions, commonly used in traffic accident investigation and reconstruction. These symbols and definitions will assist the reader in gaining a better understanding of the more complex formulae found in the text, as well as those used in other traffic accident investigation and reconstruction textbooks.

TABLE 1-1

GENERAL SYMBOLS, DEFINITIONS AND MEASUREMENT UNITS

Symbols and Descriptions	Measurement Units	
	<i>U.S</i> .	<i>S.I.</i>
General		
$a = acceleration (\pm)$	ft/s²	m/s²
C = chord	ft, in	m, cm
CG = center of gravity	ft, in	m, cm
CM = center of mass	ft, in	m, cm
d = distance, displacement	ft, in	m, cm
e = superelevation	percent	percent
(See also lower case m)	-	-
f = drag factor	decimal fraction	decimal fraction
$\mu = \text{coefficient of friction}$	decimal fraction	decimal fraction
$f = acceleration factor (\pm)$	Usually expressed	Usually expressed
	as a decimal	as a decimal
	fraction	fraction

3

$f_a = acceleration factor$	Usually expressed as a decimal	Usually expressed as a decimal	
f_d = deceleration factor	Usually expressed as a decimal	Usually expressed as a decimal fraction	
$f_L = lateral acceleration$	Usually expressed as a decimal fraction	Usually expressed as a decimal fraction	
$\mathbf{F} = \mathbf{force}$ in			
pounds (newtons)	lbf	N kef	
g = acceleration	32.2 ft/s^2	9.81 m/s^2	
due to gravity			
h = height	ft, in	m, cm	
I = inertia	slugs	kg, grams	
kg = kilograms	Ŭ	0, 0	
Ke = kinetic energy			
L = length	ft, in	m, cm	
l = length	ft, in	m, cm	
M = mass	lb	kg	
M = middle ordinate	ft, in	m, cm	
Mom = momentum	lb.ft/s	kg.m/s	
p = momentum	lb.ft/s	kg.m/s	
m = grade, slope (See also lower case e)	percent	percent	
n = percentage factor	E.g., percent	E.g., percent	
1 0	braking	braking	
	efficiency	efficiency	
R = radius	ft, in	m, cm	
r = run, rise or fall	ft, in	m, cm	
(Used in measuring grade, slope or superelevation)			
S = speed	mph	km/h	
t = time	hr, min, sec	hr, min, sec	
$t_w = track width$	Usually expressed	Usually express	
	in inches	in cm	
Mu = Coefficient of	Usually expressed	Usually expressed	
friction	as a decimal	as a decimal	
(See also <i>f</i> , drag factor)	fraction	fraction	
V = velocity	ft/s	m/s	
W = weight	lb	kg	

Symbols

Symbols to Denote Specific Angles

$\alpha = alpha$	Angle in degrees
$\theta = theta$	Angle in degrees
$\phi = phi$	Angle in degrees
$\mathbf{Y} = \mathbf{psi}$	Angle in degrees
$\Omega = omega$	Any other specific angle

Common Symbols in Solving for Momentum Speed

$\alpha = alpha$	Vehicle 1's approach angle
$\theta = theta$	Vehicle 1's departure angle
$\phi = phi$	Vehicle 2's departure angle
$\mathbf{Y} = \mathbf{psi}$	Vehicle 2's approach angle
$\Omega = omega$	Any other specific angle

General Symbols in Traffic Accident Reconstruction

tan = tangent $\tan \Theta = \text{tangent of angle } \Theta$ \in = coefficient of restitution Δ = delta (Used to indicate change, e.g., Δ V = change in velocity) ∞ =directly proportional to \cong = approximately equal; congruent $\sim =$ similar to; equivalent $\infty = infinity$ $\pi = pi$ (3.14159) The ratio of the circumference and a diameter of the same circle. $\sqrt{1}$ = radical sign $\Sigma =$ sigma; summation of $\pm =$ plus or minus $\cos = \cos ine$ $\sin = \sin e$ tan = tangentn = ad infinitum \therefore = therefore W = workft-lb N-m or j Y = Y axis; vertical axis

X = X axis; horizontal axis

Subscripts

- X_0 = subscript o denoting the original or initial factor for the component to which it is attached.
- X_7 = subscript 1 denoting an initial factor, such as speed or velocity, or number 1 for the component to which it is attached when two or more factors are involved. Additional factors may be denoted by subscripts 2 and 3 and so on.
- X_{f} = subscript f denoting the final factor for the component to which it is attached.

Overline

 \overline{S} = average speed. The small bar (overline) denotes average for the component to which it is attached.

Chapter 2

ACCELERATION

DEFINITION

Acceleration and deceleration are the rates of speed or velocity change per unit of time, usually measured in feet per second per second $(ft/s/s \text{ or } ft/s^2)$ or meters per second per second $(m/s/s \text{ or } m/s^2)$. Acceleration is an increase (+) and deceleration is a decrease (-) in speed or velocity.

ACCELERATION DUE TO GRAVITY

Formula 2-01

А.	$g = \frac{GM}{d^2}$	
В.	U.S. g = 32.2 ft/s ²	<i>S.I.</i> 9.81 m/s ²
where $g = acceleration$ due to gravity G = gravitational constant		

M = mass of earth

d = distance from center of earth

ACCELERATION FACTOR

An *acceleration factor* is a variable or unit describing the time rate of change of velocity. The factor can be used in either a pos-

7

itive (+) or a negative (-) sense, depending upon the circumstances in which it is used. In a positive sense, the result is known as acceleration; in a negative sense as negative acceleration, appropriately referred to as being and understood to be *deceleration*.

Acceleration Factor for a Vehicle that Accelerates from a Lower Speed or Velocity to a Higher Speed or Velocity During a Known Time

Formula 2-02

$$U.S. S.I. S.I.$$

V_f = final velocity t = time $S_o = initial speed$ $\hat{S_f} = \text{final speed}$ $V_o = \text{initial velocity}$

Deceleration Factor for Vehicle that Slows from a Higher Speed to a Lower Speed Over Known Distance

Formula 2-03

$$\begin{aligned} U.S. & S.I. \\ f_{d} &= \frac{S_{o}^{2} - S_{f}^{2}}{30 \text{ d}} & f_{d} &= \frac{S_{o}^{2} - S_{f}^{2}}{254 \text{ d}} \end{aligned}$$

where f_d = deceleration factor $S_o = initial speed$ $S_f = final speed$

$$d = distance$$