EVIDENCE IN TRAFFIC CRASH INVESTIGATION AND RECONSTRUCTION

ABOUT THE AUTHOR

R. W. (Bob) Rivers is a graduate of Northwestern University Traffic Institute's traffic accident investigation and police management training programs. He completed training with the Canadian Institute of Science and Technology in technical mathematics and areas of physics, studied psychology at the Okanagan Regional College, completed police administration training programs through the Canadian Police College and the University of Minnesota, and patrol management with the IACP. He developed the traffic accident investigation and traffic law enforcement training programs of the Royal Canadian Mounted Police and course training standards for the Canadian Police College, University of Alberta, and the British Columbia Institute of Science and Technology in technical traffic accident investigation. During his 33 years service with the Royal Canadian Mounted Police, Inspector Rivers was employed extensively in general police work, highway patrol, accident investigation, research and planning, and training and development. Since his retirement, Inspector Rivers has authored various internationally-recognized textbooks, acted as a consultant and has assisted in traffic accident investigation training and research studies on an international basis. Since its establishment, he worked for many years as an adjunct faculty member and director of correspondence training with the Institute of Police Technology and Management (IPTM), University of North Florida (http://members.shaw.ca/mudrivers).

EVIDENCE IN TRAFFIC CRASH INVESTIGATION AND RECONSTRUCTION

Identification, Interpretation and Analysis of Evidence, and the Traffic Crash Investigation and Reconstruction Process

Ву

R. W. RIVERS

Inspector • Traffic Branch Royal Canadian Mounted Police (Retired) Province of British Columbia Canada

CHARLES C THOMAS • PUBLISHER, LTD. Springfield • Illinois • U.S.A.

Published and Distributed Throughout the World by

CHARLES C THOMAS • PUBLISHER, LTD. 2600 South First Street Springfield, Illinois 62704

This book is protected by copyright. No part of it may be reproduced in any manner without written permission from the publisher. All rights reserved.

© 2006 by CHARLES C THOMAS • PUBLISHER, LTD.

ISBN 0-398-07644-8 (hard) ISBN 0-398-07645-6 (paper)

Library of Congress Catalog Card Number: 2005055967

With THOMAS BOOKS careful attention is given to all details of manufacturing and design. It is the Publisher's desire to present books that are satisfactory as to their physical qualities and artistic possibilities and appropriate for their particular use. THOMAS BOOKS will be true to those laws of quality that assure a good name and good will.

> Printed in the United States of America UB-R-3

Library of Congress Cataloging-in-Publication Data

Rivers, R. W. (Robert W.)

Evidence in traffic crash investigation and reconstruction : identification, interpretation, and analysis of evidence, and the traffic crash investigation and reconstruction process / by R.W. Rivers.

p. cm.

Includes bibliographical references and index. ISBN 0-398-07644-8 -- ISBN 0-398-07645-6 (pbk.)

1. Traffic accident investigation. I. Title.

HV8079.55.R545 2006 363.12'565--dc22

2005055967

CONTRIBUTORS

BERNARD S. ABRAMS, O.D.

Institute of Vehicular Safety 5880 Cleveland Avenue Columbus, Ohio 43231

ALBERT T. BAXTER

Traffic Crash Reconstructionist Hudson, Florida

GEORGE M. BONNETT, J.D.

REC-TEC-LLC Rockledge, Florida

ANNE M. CORBIN, M.A., J.D.

Springfield, Virginia

JAMES A. J. FERRIS, M.D., F.R.C.PATH.

Professor of Forensic Pathology University of British Columbia and National Advisor New Zealand Ministry of Justice for National Forensic Pathology Service

MARTIN I. KURKE, PH.D., L.L.B. (DECEASED)

Traffic Safety Consultant 7448 Spring Village Drive Apt. 118 Springfield, Virginia 22150

L. SATHYAVAGISWARAN, M.D.

Chief Medical Examiner–Coroner County of Los Angeles Los Angeles, California

MICHAEL SWEET

Forensics Expert and Consultant Edmonton, Alberta, Canada

ROBERT WYMAN

Photography Expert Wyman Enterprises, Inc. Miami, Florida To Dr. R. C. (Dick) Hodge A true friend of the entire traffic crash investigation and reconstruction profession

FOREWORD

R. (Bob) Rivers needs no introduction to those in traffic crash investigation and reconstruction. Since the early1980s, he has written an impressive number of comprehensive training and reference works in this field as well as a host of shorter manuals on related topics. All have been widely read and many of them used in setting up training programs in the United States and Canada and around the world. Not only has he continued to write, he has also kept abreast of new developments and techniques in the discipline and has earned a reputation for accuracy and dependability from practitioners and technical experts alike.

Bob's latest book, published by Charles C Thomas, is titled *Evidence in Traffic Crash Investigation and Reconstruction* and subtitled *Identification, Interpretation and Analysis of Evidence, and the Traffic Crash Investigation and Reconstruction Process.* It has ten chapters providing detailed information on every aspect of this very important part of working a crash. Many sections draw on specialized expertise of other recognized authorities. This new book also gives the reader a keen sense of why the proper handling and recording of evidence is even more basic to a thorough crash investigation and reconstruction than the ability to apply formulae derived from the principles of physics and requiring the use of math, vital though this ability certainly is.

As Director Emeritus of the Institute of Police Technology and Management, I wish to acknowledge the great contribution Bob has made to IPTM from its founding in 1980 to the present. Traffic crash investigation and reconstruction was one of the first kinds of training this new organization offered and Bob wrote several of the early works that IPTM published in this subject area, including his monumental *Training and Reference Manual for Traffic Accident Investigation*. Over the years, he has not only continued to provide IPTM with relevant manuscripts for publication, but has also designed the array of IPTM plastic traffic templates that have proven so popular. He introduced correspondence training in traffic crash investigation to IPTM and for many years personally conducted this training for our institute. He has represented IPTM at many international conferences and given selflessly of his time to all persons seeking information about traffic crash investigation and reconstruction. Bob Rivers retired from the RCMP in 1985 as Officer in Charge of Traffic Branch for the Province of British Columbia. During the course of his 33 years of service with the RCMP, Bob performed nearly every phase of police work– highway patrol, traffic accident investigation, general police work, training and development, to name just a few–often in a hands-on but also in a supervisory or managerial capacity. It is noteworthy that even with his breadth of experience in law enforcement, Bob eventually chose traffic as his specialty. Those in traffic crash investigation and reconstruction the world over can be glad that he did.

> RUSSELL AREND Director Emeritus, Institute of Police Technology and Management, University of North Florida May 2005

PREFACE

This manual begins with a detailed description of the entire investigation process, outlining the internationally recognized series of events that go into making up the crash investigation process. The material then graduates into the various phases and levels of investigations, showing the levels of training and education normally associated with the levels of investigations and consequently the duties and responsibilities of the investigator and reconstructionist. The manual is intended to place on record the material that will not only lead to good sound investigations and crash reconstruction, but also to outline the evidence expectations of police, lawyers, private investigators, and others who are involved in traffic crash investigation and reconstruction, through proper identification, interpretation, and analysis of evidence that can be encountered in an investigation.

The at-scene area, before vehicles and bodies are removed, holds considerable evidence for crash reconstruction and cause determination. Most importantly are skid marks, other tire marks, and vehicle and roadway damages, all of which can show vehicle placement before and at the time of the crash. For obvious reasons, many persons involved in determining cause or other findings, including attorneys and insurance claims adjusters, must rely on photographs and measurements taken by at-scene investigators, most often the police. This manual covers in detail how to identify, interpret, and analyze such evidence when photographs and measurements are presented.

Using narrative, schematics, and photographs, the mechanical inspection process is described in detail by identifying various vehicle parts, explanations of their functions, and methods of identifying failures.

Human-related factors in traffic crash investigations are discussed at length, including the traffic crash viewed as a systems failure. Looming vulnerability, a recently developed theoretical construct that helps to describe and understand social, cognitive, organizational, and psychological mechanism is described. Errors and tolerances in the investigation process, and how human error may have been made more likely to occur by an error made by the unser/maintainer, trainer, or system designer–or by the negligent action of the victim– are explained. Discussed also is the role of vision in driver performance;

perception as a four-way process; perceptions and reactions; driver's reaction to stress; and the roles of pathologists, medical examiners, and coroners in traffic crash reconstruction.

Who is an expert and expert evidence are described in detail. Errors that can occur in the investigation process and the tolerances that should be considered or allowed are explained.

Often overlooked by the frontline investigator is the importance of calling upon the skills and advice of occupational specialists to assist in the investigation and reconstruction of a crash. The manual covers in detail those professional services. They include senior, experienced, well-trained reconstructionists; lawyers; professional traffic engineers; pathologists; medical examiners and other medical professionals; and bloodstain pattern technologists, who can be called upon at any time during the initial investigation or during the compilation of evidence at or near the end of an investigation, that will ensure that the objectives of a thorough and complete investigation will be satisfied.

The manual explains how an examination of the trafficway, including special photographic techniques and scene measurements, can produce and document considerable evidence on how and why a crash occurred. It is explained how engineering, environmental, and similar other trafficway factors can often explain the action or lack of action by a trafficway user who is either directly or indirectly involved in a crash. Of particular importance are traffic control devices, daytime and nighttime weather and roadway conditions, and their effects and influences on or contribution to crashes. Considerable effort has been made in the manual to explain how to identify, interpret and analyze all forms of highway marks and damages, which can be used in the reconstruction of a vehicle-related crash, very often establishing vehicle placement and the path followed by the vehicle leading up to the crash site, all of which can be related to visibility issues.

Speed analysis is introduced with an explanation of Newton's Three Laws of Motion and terms and definitions, leading into the solving of various acceleration problems; how to calculate drag factors; determine speeds from skid marks, yaw, falls, flips and vaults, and by combining speeds. Many examples are included. As with other published works by this author, all mathematical references are worked out in both the English (U.S.) and SI (metric) measurement systems.

Various appendices covering symbols of interest to the student and investigator, mathematical conversions and speed and velocity problems already calculated to assist the user in his or her work, are included.

Finally, there is a comprehensive quick-find index that takes the reader directly to any topic, formula, or subject matter–or any combination of these.

R.W.R.

ACKNOWLEDGMENTS

I wish to acknowledge my gratitude to Charles C Thomas Publisher and the Institute of Police Technology and Management (IPTM), University of North Florida, for authority to reproduce at my discretion various excerpts from the primary references shown below, authored by myself and published by them, for inclusion in this manual. I wish also to acknowledge with thanks the following traffic crash investigators and reconstructionists for their contributions of photographs, as well as to the following professional, occupational specialists, for their kind contributions to this manual.

Mr. J. R. E. d'Aoust West-Can VAIR Sorrento, British Columbia, Canada (Photographs)

Bryan Lapp Traffic Crash Reconstructionist Parksville, British Columbia, Canada (Photographs)

Charles I. Kirk, CEO S.T.A.R. Inc. Specialist Traffic Accident Reconstruction Inc. Piqua, Ohio (Photographs)

Francis P. D. Navin, Ph.D., P.Eng. President Synetics Road Safety Research Corporation Vancouver, British Columbia, Canada John Ruller Senior Traffice Crash Reconstructionist and Trainer Road Accident Investigation Service P/L Bellbowrie, Qld., Australia

> Tim Schewe Traffic Crash Reconstructionist Parksville, British Columbia, Canada

> > Richard C. "Craig" Wilson Wylie, Texas 75098 Dallas Police Department Traffic Section Dallas, Texas (Photographs)

NOTE

Throughout the manual, various items, components, and situations that should be considered in evidence gathering and in legal presentations are discussed and explained. Many of these are accompanied by convenientlyplaced checkboxes that the investigator or attorney can use as prompters or guides in ensuring that various points of topical evidence, which can be considered as the possible or probable collision cause, or as a contributing factor, are covered in a proceeding. These should not, however, be considered restrictive—but to be used only as a guide. While some checkboxes may apply, others may not. Also, in some cases, depending upon the circumstances, additional points should be considered in an examination.

As and where applicable, for each checkbox, questions that should be asked by the investigator, attorney, or the examiner, should be: What about this? Was it examined? What were the results, findings, and/or conclusions of the examination? If it was not examined, why not?

DISCLAIMER

Many published books and technical papers have been studied and participation in many field tests made in the preparation of this manual. The information and practices set out herein are, to the best of the author's knowledge, experience, and belief, the most current and accurate in the traffic crash investigation and reconstruction profession. However, the author, publisher, editors, and contributors expressly disclaim all and any liability to any person, whether the purchaser of this publication or not, as a consequence of anything stated, done or omitted to be done, whether in whole or in part by such person in reliance upon any part of the contents of this publication. Every acceptable procedure may not be presented herein, and some of the circumstances of any given case may require additional or substitute procedures. Also, since statutes, ordinances, and organizational policies and procedures differ widely in various jurisdictions, those of the particular jurisdiction concerned should govern when there is any conflict between them and the contents of this book.

THE METRIC (SI) SYSTEM)

The metric system, Le Système International d'Unités (International System of Units, abbreviated SI in all languages), is used in most countries outside the United States. Because this manual is prepared for international use, all mathematical formulae and problem-solving examples are shown in both the United States/Imperial or English and Metric (SI) systems.

In North America, a decimal fraction is generally indicated by means of a (decimal) point on the line (not a dot in the raised or centered position). In this regard, it is important for North Americans and many others to understand that in some countries, it is the dot in the raised position that is used; also, that in some countries, a comma is used. It is the North American practice of using the dot as a decimal point situated on the line that is followed in this manual.

CONTENTS

	Page
Foreword–Russell Arend	ix
Preface	xi
1. INTRODUCTION TO TRAFFIC CRASH INVESTIGATION	3
<i>R. W. Rivers</i>	0
Evidence Defined	3
Traffic Crash Defined	3
Traffic Crash Investigation Process and Objectives	3
Traffic Crash Analysis	4
Series of Events and Human Factors	5
Definitions	5
Events and Factors	5
Crash Analysis Using the Series of Events	8
Application of the Series of Events	8
Analyzing the Events in the Series of Events	10
Crash Cause Analysis	12
Series of Events Evidence and Investigation Checklist	12
Phases and Levels of Crash Investigation	12
Education and Training	13
Duties and Responsibilities	14
Safeguarding Evidence	14
Accuracy, Errors, and Tolerances in Traffic Crash	
Investigation	15
Significant Digits	18
Occupational Specialist and Laboratory/Analyst Services	18
Forensic Specialist Services and Reconstruction Definitions	19 19
Medical Professionals	19 20
Pathologist	20
	20

2	Evidence in Traffic Crash Investigation and Reconstruction	
	Coroner-Medical Examiners	20
	Dentists and Orthodontists	20
	Behavioral Science Resources	21
	Psychiatrist	21
	Medical Laboratories	21
	Forensic Laboratories	21
	Evidence Technicians	22
	Business, Trade, and Industrial Professionals	22
	Education Professionals	22
	Legal Assistance	22
	The Expert and Traffic Crash Reconstruction	22
	Definitions	23
	Expert Qualifications	23
	An Expert's Responsibilities	24
	Expert Witness	24
	Lay Witness	24
	Fact Witness	24
	Investigators' Pre-Trial Responsibilities	24
	Evidence Evaluator	25
	Investigator's Conclusions	25
	Information Sources	25
	Fraud	26
	Documentation	27
	Exhibits	27
	Ethics	27
	Definitions	28
	Pre-Trial Consultations and Testimony	28
	Pre-Trial Consultations	28
	Testimony	29
	Inferiority Complex	30
	Accreditation Commission for Crash Reconstruction	
	(ACTAR)	30
	The History of ACTAR	30
9	HUMAN ERROR AND TRAFFIC CRASH INVESTIGATION	
2.	AND RECONSTRUCTION	32
	Martin I. Kurke & Anne M. Corbin	02
		32
	The Traffic Crash Viewed as a System Failure	32 33
	Human Reliability and Human Error	33 35
	Looming Vulnerability and Traffic Crashes	35 37
	Human Error, and Risk-Taking Investigating the Role of Human Error in Traffic Crash	37
	Investigating the Kole of Human Error in Tranc Crash Investigation and Reconstruction	38
	mvcsugauon and neconstruction	00

	Contents	xxi
3.	THE ROLE OF VISION, VISIBILITY, AND DISCERNABILITY IN DRIVER PERFORMANCE AND TRAFFIC ACCIDENT	
	RECONSTRUCTION Bernard S. Abrams	42
	Introduction	42
	The Eyes and How They Function	43
	Night and Day = Rods and Cones	44
	The Visual Field	44
	The Brain and Vision	45
	Day Eye vs. Night Eye	45
	Photopic Vision–The Day Eye	46
	Scotopic Vision–The Night Eye	46
	Other Components of Vision	46
	Visual Acuity	46
	Field of Vision	47
	Depth Perception	47
	Contrast Sensitivity	47
	Adaptation	47
	Tests of Visual Performance	47
	Visual Acuity	47
	Contrast Sensitivity	48
	Perception: A Four-Step Reaction Process	48
	Factors That Can Affect Vision	49
	Physiological Factors	49
	External Factors	49
	Environmental Factors	50
	Conclusion	50
4	. PATHOLOGY AND ACCIDENT RECONSTRUCTION James A. Farris	51
	Part 1	
	Introduction	51
	Dynamics of Crash Injury	51
	Location of Victims at Scene	52
	Medical Condition Following the Crash	52
	Prior Medical History	52
	Interpretation of Injuries	53
	Classification of Injuries	53
	Burns	54
	Fractures	55
	Safety Restraint Injuries	55
	The Victim	56
	The Driver	56

The Front-Seat Passenger	
The Rear-Seat Passenger	
Infants and Children	
The Pedestrian	
Motorcyclists and Cyclists	
The Post-mortem Examination	
Conclusion	

Part 2

	THE MEDICAL EXAMINER AND TRAFFIC CRASH INVESTIGATION	60
	L. Sathyavagiswaran	
	The Expectations of a Medical Examiner in a Traffic Accident	
	Investigation	60
	General Statement	60
	Specific Situations	60
	Pedestrian Victims of Vehicular Crashes	60
	Driver/Passenger Victim of a Vehicular Crash	60
	Motorcycle Accident Victims	60
	The Vehicle Fire Victim	61
5.	BLOOD PATTERN ANALYSIS Michael Sweet	62
	Introduction	62
	History	62
	Physical Properties of Blood	63
	Determining Directionality of Bloodstains	64
	Categories of Bloodstains	64
	Types of Information Provided by a Bloodstain Pattern Analyst	66
	Analyst Assistance in Traffic Collision Investigation	68
	At-Scene Bloodstain Photography	70
	Blood Sample Collection	70
	DNA Exhibit Collection	71
	Handling of Bloodstained Exhibits	71

6. FORENSIC PHOTOGRAPHY AND SCENE MEASUREMENTS Robert Wyman & R. W. Rivers

Part 1

INTRODUCTION TO PHOTOGRAPHIC APPLICATIONS	73
Testimony	73
Photographic Techniques	76
Policies, Directives and Limitations	77

Timelines	
Personal Injury Documentation	
Part 2	
SCENE MEASUREMENTS AND PLAN DRAWINGS	
Introduction	
Scene Evidence	
Photographs and Measurements	
Field Sketch	
Scale Diagrams	
Instruments	
Symbols	
Conventions for Recording Measurements	
Baselines	
Reference Points	
Measuring Methods	
Coordinate Method	
Triangulation Method	
7. TRAFFICWAY EVIDENCE	
R. W. Rivers	
Part 1	
ASPECTS OF BASIC ENGINEERING AND DESIGN	
Traffic Control Devices	
TT (** 0)	

Contents

Traffic Signs	95
Sign Descriptions	96
Traffic Signals	98
Traffic Control Signal Unit	98
Detectors	99
Timing	101
Traffic Engineering Issues	101

Part 2

IDENTIFICATION AND INTERPRETATION OF TRAFFICWAY OBSTRUCTIONS, DEFECTS, MARKS AND DAMAGE	
EVIDENCE	104
Pavement-Edge Drop-Off	105
Roadway Damage	105
Roadway Alignment	105
Glare	105
Debris	107

	Scrapes and Scratches	107
	Groove	107
	Chip, Gouge, and Chop	109
	Hole	109
	Matching Vehicle Damage to Roadside Objects	109
	Matching Undercarriage Parts	109
	Undercarriage Evidence	110
	Tire Marks	112
	Tire Shapes and Contours	112
	Flat Tire Marks	113
	Overloaded or Underinflated (Overdeflected) Tire Mark	113
	Shadow Evidence	113
	Evidence of Tire Sideslipping	113
	Evidence of a Spinning Tire	116
	Pavement Grinding	116
	Striation Marks	116
	Yaw Mark Striations	116
	Studded Tire Striation Marks	118
	Pass-Over Tire Marks	118
	Tire Prints	119
	Scuff Mark	119
	Acceleration Marks	120
	Forward-Reverse Acceleration Mark	120
	Furrows and Ruts	121
	Skid Marks	122
	Skid Mark Defined	122
	Weight Shift in Skid Marks	122
	Impending Skid Mark	122
	Overlapping Skid Marks	123
	Offset Tire Marks	124
	Braked Wheel Tire Evidence	124
	Tire-Roadway Debris Deposit	124
	Intermittent Skid Marks	125
	Commercial Vehicle Skid Marks	125
	Bounce Tire Marks	125
	Scrub Mark	128
	Detached Utility-Trailer Skid Marks	129
	Towed Vehicle Skid Marks	129
8.	VEHICLE EXAMINATIONS R. W. Rivers	131
	Introduction	131
	Vehicle Identification Number	131

Contents

Automobile Components	133
Commercial Vehicle Components	133
Drive Trains	136
Component Failures	136
Lamps and Reflectors	138
Suspension Systems	139
Air Suspension	140
Shock Absorbers	140
Steering Systems	140
General	140
Power Assisted Steering Systems	141
Wheel Alignment	142
Wheels and Rims	142
Tires	143
Types of Tires	143
DOT/MOT Numbers	144
Speed Ratings	145
Load Ratings	145
Service Description	147
Tire Marking Standard	147
Inflation and Tire Failures	147
Brakes	150
Types of Brake Systems	150
Brake Inspections	150
Air Brake System	152
Exhaust System	152
Windshield Wipers and Defrosters	154
Mirrors	155
Vehicle Loads	156
Horn, Siren	150
Noise and Other Distractions	150
	150
Door Locks	157
Speed Recording Devices and Methods	
Speedometer	157
Black Boxes	158
On-Board Computers	158
Tachographs	158
Tachograph Charts	158
Gear Shift Lever/Selector	159
Trailer Breakaway	160
Occupant Restraint Systems	161
Seat Belt Systems	161
Child Restraints	164

xxv

Air Bags	165
How Air Bags Work	165
Vehicle Damages	167
Principal Direction of Force	168
Paint Chips and Transfers	170
Glass Damage and Condition	170
Vehicle Fires	174
Driver and Occupant Seating Positions	178
Recommended References Sites	181
9. SPEED ANALYSIS	183

Part 1

INTRODUCTION: TERMS AND DEFINITIONS	183
Speed and Velocity Defined	183
Physics	183
Newton's Three Laws of Motion	183
Force Defined	184
External Forces	185
Centripetal and Centrifugal Forces	185
Curves	185
Mass and Weight	185
Motion	186
Momentum	186
Work	186
Kinetic Energy	187
Gravity	187
Centers of Mass and Gravity	187
Vectors	187
Friction	189
Acceleration	189
Velocity, Acceleration, and Time	189
Acceleration, Time, and Distance	190
Distance and Time	192
Velocity and Speed Change Problem-Solving Formulae	192
Coefficient of Friction and Drag Factor	196
Coefficient of Friction and Drag Factor Defined	196
Grade, Slope, and Superelevation	198
Methods of Determining Drag Factor	199
Test Skids	200
Shot Marker	200
Test Skid Procedures	201
Longest Skid Mark	203

Contents

Accelerometer-Electronic Devices	203
Drag Factor Calculation	203
Drag Sleds	204
Custom-Made Drag Sleds	204
Drag Sled Operation	205
Drag Sled Calibration	206
Drag Factor Adjustments	207
Influences on Braking Distance	211
Hydroplaning	212
Roadway Coefficient of Friction (Drag Factor) Guide	213

Part 2

215
215
215
217
218
218
218
219
221
222
224
225
226
228
229
229
229

10. EVIDENCE MANUAL MOTORCYCLE CRASH

INVESTIGATION	230
Introduction	230
Types of Motorcycles	230
Controls	231
Basics	233
Dynamics	
Rake	234
Trail	
Turning	
Acceleration	236
Braking	239

xxvii

Reaction Time	240
Mechanical Considerations	240
Slide-to-Stop Speed	241
Vaults	243
APPENDICES Appendix A: English (U.S.) and Metric (S.I. Measurement Systems	245
Conversion Tables	247
Appendix B: English (U.S.) Conversion Tables	255
Appendix C: Metric (S.I.) Conversion Tables	261
Appendix D: Speedometer Accuracy	269
Appendix E: Symbols	271
Recommended Reading Index	

EVIDENCE IN TRAFFIC CRASH INVESTIGATION AND RECONSTRUCTION

Chapter 1

INTRODUCTION TO TRAFFIC CRASH INVESTIGATION

R. W. RIVERS

EVIDENCE DEFINED

1.001 Evidence is defined as that which tends to prove or disprove something; proof. In law, it is considered to be data presented to a court or jury in proof of the facts in issue and which may include the testimony of witnesses, records, documents, objects. In traffic crash investigation, this can take many forms, perhaps most important of which are observation, recognition, interpretation, recording, and presentation of items observed or that come to the attention of the investigator whether it be at the scene or during subsequent follow-up investigation. An example of this is the observation, measurement, and documentation (both written and photographic) of a skid mark; and then giving written and/or oral evidence in a court of law of a speed calculation based on the skid mark.

1.002 An often critical problem in traffic crash investigation is the recognition, significance, preservation, and utilization of the physical evidence produced by a collision of a motor vehicle with another vehicle, object, or person, and the events preceding and resulting from an occurrence: physical evidence can either astound and perplex or serve as decisive and valuable evidence in establishing and fixing liability

1.003 Traffic crash investigation involves applying the principles of perception, dynamics, and general physics to the movements of vehicles, bodies and other objects leading up to, during, and after a collision. From a properly done analysis, speeds of

vehicles, pedestrian and passenger movements, and driver responses that led to the crash and/or took place at impact and post-impact, can be determined. Additionally, analysis performed from available evidence can be used to determine mechanical failure of critical vehicle components—such as steering, brakes, suspension systems, and tires, which could have been the cause or a contributing factor in the crash.

TRAFFIC CRASH DEFINED

1.004 For the purposes of traffic crash investigation, the term *traffic crash* is defined as:

That occurrence in a series of events which usually produces injury, death or property damage.

For the purposes of this manual, the term *crash* is synonymous with the terms *accident*, *collision*, *incident*, or any other applicable, descriptive term used in various jurisdictions and in many published works.

TRAFFIC CRASH INVESTIGATION PROCESS AND OBJECTIVES

1.005 Advanced traffic crash investigation is a process that starts with an investigation and evidence gathering at the scene and continues on until the objectives of advanced traffic crash investigation have been satisfied. This includes the interpretation of evidence, whether gathered by the investigator or another investigator, and arriving at

conclusions based on sound, scientific analysis of all available evidence.

1.006 The objectives of traffic crash investigation are to determine:

- a. WHAT happened, i.e., the type of crash
- b. WHERE the crash occurred
- c. WHEN the crash occurred
- d. WHY the crash occurred, e.g., traffic law violation, trafficway engineering defects
- e. WHO was involved

The investigator must also decide upon:

- a. WHAT is the problem
- b. WHAT are the possible solutions
- c. WHICH is the best of all possible solutions
- d. HOW this solution can be implemented

The investigator should also give, but not limit, consideration to:

- a. Identifying high frequency crash sites for further study
- b. Problems in geometric design standards in relation to crashes
- d. The evaluation of safety, enforcement or other programs that are in place
- c. The need for new safety, enforcement or other programs
- d. Obtaining and/or supplying data for the planning of education and/or enforcement programs

1.007 In general terms, an initial at-scene and follow-up advanced traffic crash investigation should gather facts and information that will:

- a. Determine the cause of the crash
- Provide information that will assist in crash prevention including engineering, enforcement and education programs
- c. Provide evidence for the prosecution in the event there has been a violation of law
- d. Meet the requirements of traffic crash report completion
- e. Provide sufficient information to meet the requirements of follow-up investigation and reconstruction

1.008 An investigation involves determining how the accident occurred through an analysis based on

all available evidence gathered at the scene or during the follow-up advanced traffic crash investigation. There may be a number of hypotheses put forward by police investigators, witnesses, and other persons involved in an investigation. All hypotheses should be considered and evaluated in terms of whether they are credible or ridiculous, given the circumstances and facts at hand, until the reasonable ones have been identified. The most credible of these should then be investigated further, leaving, however, all aspects of the case open for further consideration and investigation as new evidence or information comes to light. Even the apparently non-credible hypotheses may have to be revisited. It is important, however, that the advanced crash investigator appreciates his/her limits in terms of expertise regarding an ability to completely reconstruct a crash. In some cases, it might be advisable or necessary to obtain the services of a properly qualified reconstructionist to interpret evidence gathered and assist in the reconstruction.

TRAFFIC CRASH ANALYSIS

1.009 For the purposes of professional traffic crash investigation, *traffic crash* analysis is defined as:

The separation of the whole (the series of events) into its parts or elements, especially to determine the nature, form, etc., of the whole by examination of the parts (events).

1.010 In order for the investigator to conduct a proper analysis of a traffic crash situation, he/she should be familiar with the various *events* that make up a traffic crash, and then ensure that the investigation covers all aspects of *each* of those events. For the purposes of traffic crash investigation and reconstruction, the *whole* of these various *events* is referred to as the *series of events*, a subject that is introduced in at-scene traffic crash investigation training courses and manuals. Because of the topic's importance to understanding evidence identification, interpretation, and analysis, it is once again reviewed here.

1.011 The following is an outline of events which covers most, if not all, circumstances and/or parameters encountered in traffic crash investigation and reconstruction. There may, however, be other or additional methods that can be used to satisfy

analyses of complex reconstruction problems, particularly through the use of modern, sophisticated computer programs.

1.012-1.015 reserved.

SERIES OF EVENTS AND HUMAN FACTORS

Definitions

1.016 For the purposes of traffic *crash analysis*, the *series of events* includes *situations* that are in place or may at any time arise, all of which may be divided into two distinct categories:¹

a. *Pre-Scene Series of Events*. The events that lead up to the driver's point of possible perception of a hazard.

b. *At-Scene Series of Events*. The events that occur within the on-scene area, including the point of possible perception.

Human factors include, but are not limited to:

- a. Perception time
- b. Reaction time
- c. Driver experience
- d. Disabilities

Individual events and factors will be explained and enlarged upon later in this chapter as well as in various other chapters throughout the manual.

Events and Factors

1.017 The *pre-scene series of events* can be further divided into two areas, namely (1) *pre-trip events*, and (2) *trip events*:

PRE-SCENE SERIES OF EVENTS

Figure 1-01. An example of the series of events.

1. *Pre-trip events*. Generally, those events that occur before and include *situations* that exist *before* the trip is started. They may be considered as backgrounds of the driver and vehicle. Examples of pre-trip events and situations are:

Driver

- a. Driver experience
- b. Driver training
- c. Intelligence
- d. Alertness
- e. Reaction
- f. Habits
- g. General health condition, including age, an illness, and permanent or temporary injury or disability
- h. Fatigue
- i. A happening that caused emotional upset, stress, depression, or preoccupation
- j. Attendance at a party
- k. Limited sleep or no sleep
- 1. Consumption of alcohol or drugs

Vehicle

- a. Defective headlights, steering, brakes, windshield, wipers, tires, etc.
- b. Overloaded

As the trip is made, many of these pre-trip *events* or *situations* may carry on into the at-scene series of events, e.g., a situation such as the driver's ability to drive being impaired by alcohol or a drug, or an overloaded vehicle.

2. *Trip events*. Those *events* that occur or *situations* that arise after the trip starts and lead up to the point of possible perception, including factors relative to the driver and vehicle, such as, but not restricted to:

Driver

- a. Stopping for a meal or coffee
- b. Fatigue, illness, or depression
- c. Consumption of alcohol or drugs
- d. Erratic or other unsafe driving (possibly observed by other motorists, pedestrians, businessmen, or other witnesses)
- e. Carbon-monoxide poisoning

Vehicle

- a. Tire blowout
- b. Brake, headlight, or steering failure
- c. Other mechanical failure

- d. View obstructions, e.g., dirty windshield, defective windshield, or load transfer
- e. Load falling off vehicle

Environmental

- a. View obstruction
- b. Weather conditions, e.g., rain, snow, ice

1.018 At-scene series of events include:

- a. *Point of Possible Perception.* The place and time at which the hazard could have been perceived by a normal person. It precedes actual perception and is the beginning of perception delay² (see also 3.042).
- b. *Point of (Actual) Perception*. The point where a situation is comprehended or perceived as a hazard.
- c. *Perception Delay.* The time involved from the point of possible perception to the point of actual perception.

Inattention or distractions may cause perception delay. In many instances, actual perception immediately follows the point of possible perception, and there is no actual perception delay. When there is a known perception delay, it may be considered to be 0.75 seconds for investigation purposes. The distance traveled during perception delay is perception distance. The point of possible perception and the point of actual perception may be influenced by many driver and environmental factors, some of which are:

Driver

- i. Experience
- ii. Intelligence
- iii. Judgement
- iv. Alertness
- v. Natural senses (age must be considered)
- vi. Knowledge of area
- vii. Distractions

Environmental

- i. Weather and light conditions
- ii. Load on vehicle and protrusions
- iii. Location of traffic-control devices
- iv. View obstructions
- d. *Perception Distance*. The distance traveled during perception delay. To calculate perception distance, use:

Formula 1–01

SI

 $D = S \times 1.466 \times t$ $D = S \times .277 \times t$

where D = distance

- S = speed in mph (km/h)
- t = time in seconds

U.S.

- e. *Reaction.* The voluntary or involuntary response to a hazard or other situation that has been perceived.³
 - i. *Simple reaction.* The response to an expected situation, such as responding to a traffic light.
 - ii. *Complex reaction.* The reaction involving a decision, such as when the driver has to decide quickly whether to step on the accelerator or the brake pedal.
- f. *Reaction Time.* The length of time from when a person perceives a given situation as being a hazard to when he reacts to his perception. If a person's reaction time is unknown, 1.50 seconds may be used for daytime investigation purposes and 2.50 seconds for nighttime.⁴

Take for example, the task of braking to avoid an unexpected object on the roadway. Once the object in the path becomes visible, the driver must see the object, recognize the hazard, lift his foot from the accelerator, and push the brake pedal.

The processes involved are (a) seeing the object, (b) processing the initial information, (d) understanding the information or realizing the danger, (e) deciding what to do, and (f) doing it. For such things, the average driver perception-reaction time is 2.5 seconds⁵ (see also 3.044).

- g. *Simple Reaction Time.* That which involves an non-complex response, such as touching the horn, can be less than a second. Older drivers have longer reaction times than do young drivers. At about 40 years of age, simple reaction times begin to increase to the extent that at about 70 years of age, a driver's reaction time may increase by as much as 50 percent.
- h. *Reaction Distance*. The distance traveled during reaction time. (To calculate reaction distance, use Formula 1–01.)

- i. *Action Point.* The place where a person takes action, such as braking or steering, based on his perception of a hazard. The action point follows reaction and may be influenced by the driver's:
 - i. Operating skills and habits
 - ii. Ability to control the vehicle
 - iii. Freedom of movement
 - iv. Knowledge of vehicle
 - v. Reaction time
- j. *Evasive Action.* The action or combination of actions taken (e.g., steering, braking) with intention to avoid a collision or other hazardous situation.
- k. *Evasive Action Distance*. The distance traveled from the action point to the place where a traffic unit stops by itself or otherwise avoids a collision, or, if a collision is not avoided, to the point of impact.
- 1. *True (Safe) Area.* The area leading up to the point of no escape in which evasive action could be initiated to avoid a collision.
- m. *Point of No Escape.* The place and time beyond or after which the crash cannot be prevented by a particular traffic unit.⁶ Because of committed motion and laws of physics, no action will avoid the collision at this point, although action such as braking or steering may reduce the seriousness of injury or damage. The point of no escape may be anywhere along a driver's path before collision depending upon the speeds of vehicles involved, visibility, and so on. This point may be before the point of possible perception, and if so, a crash cannot be avoided.

The point of no escape may be influenced by such factors as:

- i. Visibility of hazard
- ii. Roadway alignment
- iii. Positioning of traffic-control devices
- iv. Driver distractions
- v. Weather and light conditions
- vi. Condition of roadway surface, e.g., ruts, holes, or other roadway damage, slippery conditions or obstructions, etc.
- vii. Type, size, and condition of vehicle being operated
- viii. Cargo being carried

- n. *Encroachment*. The entering or intruding into the rightful path or area of another traffic unit.
- o. *Point of Impact.* The place, e.g., the point on the roadway, where a traffic unit strikes another traffic unit or some other object, or overturns.
- p. *Primary Contact.* The first contact between two traffic units or a traffic unit and another object, or a vehicle's first contact with a highway surface during an overturn.
- q. *Engagement*. The initial penetration of one traffic unit into another traffic unit or object during collision.
- r. *Maximum Engagement*. The point or time at which there is maximum penetration by one traffic unit into another traffic unit or object during collision.
- s. *Disengagement.* The separation of traffic units or a traffic unit and other object after maximum engagement.
- t. *Secondary Contact*. A contact occurring when a traffic unit disengages from a primary contact and strikes the opposing traffic unit a second time or strikes another traffic unit or object.
- u. *Post-secondary Contact.* A post-secondary contact occurs when a vehicle disengages from a secondary contact and again strikes the same unit or object or has a first or primary contact with a third traffic unit or other object. Under these circumstances, what may be a secondary or post-secondary contact for one unit may be the primary or first contact by another traffic unit.
- v. *Final Position.* The location where a traffic unit comes to rest after collision. In determining the final position, it is important to learn whether the unit stopped at the position where it was found or whether it had rolled, been driven, or moved to that position after the collision. For the purposes of this definition, final position does not include a position to which it may have been driven or forcibly moved, such as being towed by a tow vehicle, after it came to rest after disengagement.
- w. *At-Rest Position*. A location to which a vehicle rolls, is driven, or moved after disengagement, such as the position at which it stops or rests as the result of being towed by a tow vehicle or forcibly removed from the point of disengagement.

- x. *Personal Injury*. For investigation purposes, a personal injury is bodily harm caused to a person during the at-scene series of events.
- y. *Fatal Injury*. A fatal injury is an injury that causes death during the at-scene series of events or a personal injury that thereafter results in the death of the injured person as direct result of an injury sustained during the at-scene series of events. (Note: Local legislation generally stipulates a time limit for an initial personal injury classification to be classified as a fatal injury.)

1.019 Drivers and witnesses generally describe prescene series of events and at-scene series of events forward and lead up to the result. An investigator, however, must start with the result and investigate back through the events as far as necessary to determine where, when, how, and why the crash occurred. It may not always be necessary for the investigator to extend his investigation into the prescene series of events; however, he should extend his investigation as far back as necessary to determine what a driver may or may not have done before the crash that may have contributed to his action or lack of action at the crash scene.

1.020 Each *traffic unit*, i.e., a road vehicle or pedestrian, involved in a crash has its own series of events. Each unit's series of events must be investigated separately. It should be noted, however, that all the events listed in the series of events may not apply to each and every traffic unit in a crash situation. Some events may not be present in the same series for another unit, and vice versa. For example, there may not be a perception delay, personal injury, or secondary contact in the case of a single vehicle crash, or for one particular unit in multiple vehicle collision. Also, even if the events are the same for one or more vehicles involved in a collision, they may not always follow the same sequence.

1.021-1.025 reserved.

CRASH ANALYSIS USING THE SERIES OF EVENTS

Application of the Series of Events

1.026 A *crash analysis* should include the many variables that play a part in the makeup of an crash situation. These include such things as a driver's sight