EVALUATING RADIOGRAPHS

EVALUATING RADIOGRAPHS

By

QUINN B. CARROLL, M.ED., R.T.

Director Radiography Department Midland College Midland, Texas

Photography by William S. Heathman, B.S., R.T.

CHARLES C THOMAS • PUBLISHER, LTD. Springfield • Illinois • U.S.A.

Published and Distributed Throughout the World by

CHARLES C THOMAS • PUBLISHER, LTD. 2600 South First Street Springfield, Illinois 62794-9265

This book is protected by copyright. No part of it may be reproduced in any manner without written permission from the publisher. All rights reserved.

© 1993 by CHARLES C THOMAS • PUBLISHER, LTD.

ISBN 978-0-398-05878-4 (cloth) ISBN 978-0-398-07960-4 (paper) ISBN 978-0-398-08077-8 (ebook)

Library of Congress Catalog Card Number: 93-8350

With THOMAS BOOKS careful attention is given to all details of manufacturing and design. It is the Publisher's desire to present books that are satisfactory as to their physical qualities and artistic possibilities and appropriate for their particular use. THOMAS BOOKS will be true to those laws of quality that assure a good name and good will.

Printed in the United States of America SC-R-3

Library of Congress Cataloging in Publication Data

Carroll, Quinn B. Evaluating radiographs / by Quinn B. Carroll; photography by
William S. Heathman. p. cm. Includes index. ISBN 978-0-398-05878-4 (cloth)–ISBN 978-0-398-07960-4 (pbk.)–ISBN 978-0-398-08077-8 (ebook)
1. Radiography, Medical–Evaluation. I. Title. [DNLM: 1. Radiography–methods. WN 200 C319e 1993]

RC78.C349 1993 616.07'572-dc20 DNLM/DLC for Library of Congress

93-8350 CIP To Margaret Nielsen Carroll Jason Melissa Chad Tiffani Brandon Tyson

PREFACE

This textbook does not contain very many good radiographs! And for a good reason: Positioning textbooks generally present ideal radiographs to illustrate the products of correct positioning. These are of little help, however, in determining the corrective actions needed to ensure that *repeated* radiographs are done right.

Because of the great number of variables with which they must cope, all radiographers have to repeat exposures occasionally in daily practice. Yet, no radiograph should have to be repeated more than one time. On observing the original image, the radiographer should be able to assess all of the needed adjustments in both technique and positioning in order to produce an optimum view when the exposure is repeated. For example, on a single view the density may need to be darker, certain artifacts removed, rotation of the body part corrected and perhaps a little less angulation of the x-ray beam employed.

An incomplete education has produced many technologists with an ability to recognize when a spine position (for example) is rotated, but not *which way* it is rotated and *how much*, or with the ability to see when the x-ray beam angle for a sunrise view of the knee is off, but not whether it is angled *too much* or *not enough*. What value is there in recognizing that something is wrong about a radiographic image if one cannot accurately determine the type and amount of adjustment needed to correct it?

Don Q. Paris published a wonderful book in 1983, *Craniographic Positioning with Comparison Studies*, the first to address this issue, but limited the scope of the text to skull positions only. It is a daunting task to attempt to address fully the evaluation of all aspects of the radiographic image, including not only all anatomical areas of interest but also the technical quality of the image. To make the amount of information manageable for both the student and the author, this text (1) excludes nonroutine or rare procedures and views, (2) only demonstrates *incorrect* positions for most procedures, using correct positions only on those very challenging and rare cases such as mastoid series or SI joints, and (3) focuses primarily upon reliable skeletal criteria and combines procedures which share criteria where ever possible. For example, the amount of rotation in the pelvis can be determined by the bony structures whether it is for a cystogram, IVP, sacrum, pelvis, or barium enema. Therefore, the appearance of soft tissue organs in contrast studies (which is highly variable) is covered only briefly.

Section II of this book may be best used by laying it alongside your positioning manual for comparison with correctly positioned views. The author has made every effort to keep the text clear, concise, and to the point, and would appreciate any suggestions for future editions.

The capability to evaluate radiographs is fundamental to each technologist's performance and to keeping patient dose from unnecessary retakes at a minimum. It is hoped that this text will contribute substantially to that goal.

QBC

ACKNOWLEDGMENTS

Would like to extend grateful acknowledgment to William S. Heathman, R.T., for his photography and help in producing this textbook, as well as for his personal friendship.

Special thanks to Shawna Loyd for the massive amount of hand development of photographs and special darkroom techniques required for a work of this nature, and for the assistance of Vanessa Gunn and Lori Fuson in the photographic darkroom.

I am grateful for the professional support of Eileen F. Piwetz and Charles J. Engbretson throughout my educational career, and for my earliest role model of professionalism in health care, Sherri Uzelac, R.T.

CONTENTS

~ 1		Page
Preface		vii
	PART I-GENERAL CONSIDERATIONS	
Chapter		
1.	IDENTIFICATION, ASSESSMENT AND LABELLING	5
	Assessing the Requisition and the Patient	6
	Additive Conditions	9
	Destructive Conditions	11
	Trauma	11
	Body Habitus	13
	Radiograph Identification and Labelling	15
2.	RADIATION PROTECTION	19
	Cassette and Film Type	19
	Collimation and Cassette Size	21
	Shielding	22
	Minimizing Repeated Exposures	23
3.	EXPOSURE-RELATED ARTIFACTS	27
	Patient-Related Artifacts	28
	Casts and Splints	32
	Radiographic or Patient Care Equipment	34
	Accidental Exposure	36
	Motion	38
4.	PROCESSING AND FILM HANDLING ARTIFACTS	47
	Storage and Handling	47
	Static Electricity	52
	Processing Artifacts	54
Review #	\$1	58

Evaluating F	Radiographs
--------------	-------------

PART II-POSITIONING QUALITY

5.	ALIGNMENT AND COLLIMATION	67
	Film Placement	67
	Central Ray Location and Collimation	72
6.	CRITERIA FOR EVALUATING POSITIONS	83
	Rotation	83
	Flexion/Extension	84
	Tilt, Abduction and Adduction	84
	Angulation of the X–Ray Beam	87
	Positioning Aids and Tips	88
	Views	89
	Selecting Anatomical Criteria	90
7.	TORSO POSITIONS	95
	Chest and Bony Thorax	95
	Sternum and SC Joints	106
	Abdominal and Pelvic Views	108
	Sacroiliac Joints	115
	Abdominal Viscera	117
	Spines	125
	Thoracic and Lumbar Spines	126
	Sacrum and Coccyx	134
	Cervical Spine	137
	Technique	148
8.	EXTREMITY POSITIONS	149
	Hand and Digits	149
	Wrist	154
	Elbow and Long Bones	159
	Shoulder Girdle	164
	Foot and Toes	168
	Calcaneus	172
	Ankle	176
	Knee and Long Bones	179
	Hips	188
9.	HEAD POSITIONS	195
	Skull and Facial Bones	195
	Zygomatic Arches	215

	Contents	xiii
	Optic Foramina/Orbits	220
	Mandible	220
	Temporomandibular Joints and Mastoids	224
	Petrous Portion of Temporal Bone	228
	Technique	230
Review #2		232

PART III-TECHNICAL QUALITY

10.	DENSITY	245
	Radiographic Evaluation of Density	245
	Critiquing Radiographic Density	247
	Use of Wedge Filters	251
	Variables Affecting Density	251
11.	CONTRAST AND GRAY SCALE	257
	Radiographic Evaluation of Contrast and Gray Scale	257
	Contrast Versus Gray Scale	259
	Variables Affecting Contrast and Gray Scale	265
12.	FOG AND NOISE	271
	Radiographic Evaluation of Fog and Noise	271
	Desirable Gray Scale Versus Fog	274
	Causes of Scatter Fog	275
	Effects on Density and Contrast	277
	Fog Versus Blur	279
	Variables Affecting Fog and Noise	282
	Grid Lines and Cut-Off	283
13.	SHARPNESS OF RECORDED DETAIL	289
	Radiographic Evaluation of Sharpness	289
	Variables Affecting Sharpness	293
14.	MAGNIFICATION	297
	Radiographic Evaluation of Magnification	297
	Variables Affecting Magnification	297
15.	SHAPE DISTORTION	301
	Radiographic Evaluation of Shape Distortion	301
	Variables Affecting Shape Distortion	303
16.	RESOLUTION: OVERALL IMAGE QUALITY	303
	Resolution	305

Density Trace Diagrams	308
Modulation Transfer Function	310
Geometrical Penumbra	310
Absorption Penumbra	311
Total Penumbra	314
Magnification, Distortion and Noise	315
Summary	315
Hierarchy of Image Qualities	315
Definitions of Image Qualities	316
Review #3	317
Appendix 1: Answers to Film Critique Reviews	323
Appendix 2: Review Questions	327
Appendix 3: Answers to Review Questions	351
Index	353

EVALUATING RADIOGRAPHS

٠

PART I GENERAL CONSIDERATIONS

Chapter 1

IDENTIFICATION, ASSESSMENT AND LABELLING

Careful identification of the patient and labelling of the radiograph seem to be such simple tasks that they may not be taken seriously by many students and radiographers. Yet the consequences of an error in this regard can be among the most profound in the practice of radiography. Consider the following: Approximately 500 radiology patients die each year due to allergic reactions to contrast agents used for intravenous urography and other procedures. Suppose the wrong patient was brought into the radiographic room for such a procedure, and this patient was highly allergic? Such mistakes can and do happen. One radiographer called for a "Mr. Johnson" and performed a complete IVP series. Afterward it was discovered that there had been two patients in the waiting area with the surname "Johnson." The IVP patient was still waiting, and the wrong patient, who had endured the injection and procedure, had not been assertive enough to fully question the radiographer's proceeding.

This is only one of many examples of improper identification which could lead to serious injury and malpractice lawsuits. Further, when any medical case with a radiologic component goes to court, radiographs may be required as evidence, at which time any stickers or writing made on a radiograph after exposure will be called into question, especially if they contradict original information "flashed" or radiographically exposed onto the film. The same emphasis must be placed on proper "right" and "left" marker placement and other labelling on the radiograph pertinent to diagnosis.

As radiologists are in less direct contact with patients, they rely increasingly upon the technologist to acquire pertinent clinical histories which are essential to proper diagnosis. It is natural that the technologist should obtain and note this information, because the condition of the patient directly bears upon the projections that the radiographer may decide to take, and upon anticipated adjustments in radiographic technique that may prevent repeated exposures.

As an integral member of the radiological health care team, the

radiographer must assume professional responsibility for careful identification and assessment of each patient and for proper identification and labelling of each radiograph.

ASSESSING THE REQUISITION AND THE PATIENT

The requisition received by the radiographer should state the exact anatomical area to be radiographed, and the suspected diagnosis or purpose of the procedure. If there is any question regarding the views desired, the radiographer or a supervisor should contact the referring department or office for clarification. For example, a requisition for "AP and Lateral Hips," without *right* and *left* hips specifically noted, should be clarified: Are two views of one hip desired, or is this a bilateral examination? Frequently the suspected diagnosis or purpose of the procedure may be absent on the written requisition, and this information must be obtained by questioning the patient.

In any case, the patient should always be briefly questioned about his or her history and condition, both as a confirmation of data on the requisition and for information that might be germane to how the procedure should be performed. Common changes made in radiographic procedures due to historical information include:

- 1. Any optional views that might be indicated beside the routine views normally taken
- 2. Any modifications in positioning that might be indicated or positioning aids that might be needed
- 3. Any modifications in technical factors that might be anticipated to produce the proper image density, contrast, and sharpness

One patient, for example, demonstrated the entrance wound of a sliver just behind the medial malleolus of the ankle. The radiographer elected to take an additional, nonroutine view—an external oblique which projected this sliver free of superimposition of any bones that would interfere with a confident diagnosis. Tangential views are often indicated for superficial foreign bodies such as slivers, Figure 1.

The condition of the patient is the greatest variable which the radiographer faces in producing quality radiographs. In addition to being aware of the normal variations in body habitus, tissue composition, age, bony structure, stage of respiration, presence of contrast agents, and thickness of body parts, one must also be conscious of abnormal changes

Figure 1. A nonroutine *tangential* projection (lateral oblique) of the hand demonstrating a small metal sliver (arrow) superficially lodged in the palm. A soft tissue technique of 46 kVp at the usual mAs was employed.

due to pathology or medical intervention. An example of medical intervention which alters the course of a radiologic examination is hip surgery. If a total hip prosthesis or a surgical pin has been implanted, the centering for the AP view of the bilateral hips would be modified: Instead of centering as usual to the pelvis, the AP view must be centered four to six inches lower in order to include the entire length of the hip prosthesis or surgical pin, Figure 2. Failure to gather historical information such as previous surgery before initiating the radiologic examination results in unnecessary repeats and expense, as well as increased patient exposure to radiation. Evaluating Radiographs

Figure 2. An AP projection of the unilateral hip clipping off the bottom of the surgical hip pin. This centering would have been acceptable for a normal hip, but a history of hip pinning indicates a modification in centering, four inches lower.

Such information can be obtained from:

- 1. The requisition
- 2. The patient when possible
- 3. The patient's chart

Radiographers should have at least a rudimentary ability to interpret patients' charts. Careful observation of the patient frequently provides readily apparent signs of conditions that bear on technique selection. It should be emphasized that obtaining pertinent patient history and assessing conditions that affect radiographic technique are the responsi-