STUDENT WORKBOOK for RADIOGRAPHY in the DIGITAL AGE

Quinn B. Carroll, M.ED., R.T.

STUDENT WORKBOOK

for

RADIOGRAPHY IN THE DIGITAL AGE

Second Edition

Student Workbook for

RADIOGRAPHY IN THE DIGITAL AGE

By QUINN B. CARROLL, M.Ed., R.T.

CHARLES C THOMAS • PUBLISHER, LTD. Springfield • Illinois • U.S.A. Published and Distributed Throughout the World by

CHARLES C THOMAS • PUBLISHER, LTD. 2600 South First Street Springfield, Illinois 62704-9265

This book is protected by copyright. No part of it may be reproduced in any manner without written permission from the publisher.

© 2014 by CHARLES C THOMAS • PUBLISHER, LTD.

ISBN 978-0-398-08119-5 (spiral/paper) ISBN 978-0-398-08120-1 (ebook)

With THOMAS BOOKS careful attention is given to all details of manufacturing and design. It is the Publisher's desire to present books that are satisfactory as to their physical qualities and artistic possibilities and appropriate for their particular use. THOMAS BOOKS will be true to those laws of quality that assure a good name and good will.

> Printed in the United States of America UBC-R-3

INTRODUCTION

How to Use this Student Workbook

This **Student Workbook** *for* **Radiography in the Digital Age** is designed for use in the following typical radiography courses:

- 1. Physics of Radiography
 - A. Radiation Production and Characteristics
 - B. Imaging Equipment
- 2. Principles of Imaging
- 3. Digital Image Acquisition and Display
- 4. Radiation Biology and Protection

The **Workbook** is entirely organized in a "fill-in-the-blank" format. The wording of each question closely matches both the textbook and the lecture slide series for each course. This format is designed for *short-term* reinforcement of the student's retention of lecture and reading material by focusing on key words. The **Workbook** should therefore be used on a *daily basis*, not as a self-test or review after whole units have been covered. The following are specific recommendations on how the student can most fully benefit from the Workbook and other ancillaries:

1. IN-CLASS USE:

This is the most recommended method, for use with the **Lecture Slides for Radiography** in the Digital Age. The sequence and wording of questions closely matches the slides. The questions have been kept short, with most blanks for filling in only with *key words* from the slide series. This is an effective "note-taking" tool that strikes a perfect balance between allowing the student to concentrate on the lecture by doing minimal writing, and still provoking the student to *participate* in classroom learning.

Instructors may elect to require this type of classroom participation and award points for completing each unit.

Some additional space at the bottom of each page is provided for any other notes the student might wish to take during lectures.

2. HOMEWORK USE:

If the **Workbook** is used as a reinforcement tool for *homework*, it is strongly recommended that the student answer the corresponding questions after reading *each major section* of a chapter. To facilitate this, the major unit subheadings are included in the **Workbook**. Do not wait until completing the entire chapter, or you may have trouble recalling the **key words** that are elicited by each question.

3. UNIT REVIEW AND SELF-TESTING:

For the purposes of review, self-testing or preparation immediately prior to a test, **Chapter Review Questions** are available at the end of each chapter in the textbook. Answer keys to these questions may be made available from your instructor. These are better suited for unit review than the workbook material.

A complete answer key for this workbook is available on CD, in the *Instructor Resources for Radiography in the Digital Age, 2nd Edition*, available from Charles C Thomas, Publisher.

vi

CONTENTS

		Page		
Intr	oduction	v		
Chapter				
1.	AN INTROUCTION TO RADIOGRAPHIC SCIENCE	3		
2.	BASIC PHYSICS FOR RADIOGRAPHY	7		
3.	UNIT CONVERSIONS AND HELP WITH MATH	11		
	THE ATOM	19		
	ELECTROMAGNETIC WAVES	26		
6.	MAGNETISM AND ELECTROSTATICS	38		
7.	ELECTRODYNAMICS	44		
8.	X-RAY MACHINE CIRCUITS AND GENERATORS	54		
9.	THE X-RAY TUBE	60		
10.	X-RAY PRODUCTION	66		
11.	CREATION OF THE RADIOGRAPHIC IMAGE	71		
12.	PRODUCTION OF SUBJECT CONTRAST	77		
13.	VISIBILITY QUALITIES OF THE RADIOGRAPHIC IMAGE	81		
14.	GEOMETRICAL QUALITIES OF THE RADIOGRAPHIC IMAGE	84		
15.	MILLIAMPERE-SECONDS	90		
16.	KILOVOLTAGE-PEAK	94		
17.	GENERATORS AND FILTRATION	98		
18.	FIELD SIZE LIMITATION	102		
19.	PATIENT CONDITION, PATHOLOGY, AND CONTRAST AGENTS	106		
20.	SCATTERED RADIATION AND GRIDS	110		
21.	ANODE BEVEL AND FOCAL SPOT	116		
22.	SOURCE-TO-IMAGE RECEPTOR DISTANCE (SID)	120		
23.	OID AND DISTANCE RATIOS	125		
24.	ALIGNMENT AND MOTION	128		
25.	ANALYZING THE RADIOGRAPHIC IMAGE	132		
26.	SIMPLIFYING AND STANDARDIZING TECHNIQUE	137		
27.	USING AUTOMATIC EXPOSURE CONTROLS (AEC)	141		
28.	COMPUTER BASICS	147		
29.	CREATING THE DIGITAL IMAGE	159		

30.	DIGITAL IMAGE PREPROCESSING	166
31.	DIGITAL IMAGE POSTPROCESSING	172
32.	POSTPROCESSING OPERATIONS IN PRACTICE	184
33.	APPLYING RADIOGRAPHIC TECHNIQUE TO DIGITAL IMAGING	194
34.	CAPTURING THE DIGITAL IMAGE: DR AND CR	204
35.	DISPLAY SYSTEMS AND ELECTRONIC IMAGES	215
36.	PICTURE ARCHIVING AND COMMUNICATION SYSTEMS (PACS)	221
37.	MOBILE RADIOGRAPHY AND TOMOGRAPHY	226
38.	FLUOROSCOPY AND DIGITAL FLUOROSCOPY	230
39.	QUALITY CONTROL	242
40.	RADIATION PERSPECTIVES	250
41.	RADIATION UNITS AND MEASUREMENT	257
42.	RADIATION BIOLOGY: CELLULAR EFFECTS	270
43.	RADIATION BIOLOGY: ORGANISM EFFECTS	283
44.	RADIATION PROTECTION: PROCEDURES AND POLICIES	295

STUDENT WORKBOOK

for

RADIOGRAPHY IN THE DIGITAL AGE

Chapter 1

INTRODUCTION TO RADIOGRAPHIC SCIENCE

The Scientific Approach

1. Fill in the terms for the following definitions:

:	The attempt to simplify concepts and formulas, to economize explanations; the philosophy that simple explanations are more likely to be true than elaborate, complex ones.
:	The requirement that proofs (experiments) can be duplicated by different people at different times and in different locations with precisely the same results.
:	The requirement that any theory or hypothesis can logically and logistically be proven <i>false</i> . Anything that cannot be proven false is not science, but belongs in another realm of human experience.
:	The requirement that experiments and their results can be directly observed with the human senses.
:	The requirement that results can be quantified mathematically and measured.

2. Perhaps the strongest aspect of the scientific method is that when it is used correctly, it is______.

Additional NOTES:

- 3. Radiography is primarily a science because the radiographic image contains a ______ amount of diagnostically useful details, a ______ amount of information.

A Brief History of X-Rays

- 5. In 1895, Wilhelm Roentgen was one of several researchers studying ________-rays which streamed across their ______ tubes when electricity was applied.
- 6. Roentgen accidentally discovered x-rays on November _____, _____ in _____ in _____, Germany.

The Development of Modern Imaging Technology

- 10. A dentist, William Rollins, developed both the first ______ and the first
- 11. The high-efficiency hot-filament x-ray tube was invented by ______.

Additional NOTES:

4

12. American professor ______ sandwiched x-ray film between fluorescent intensifying screens (developed by Thomas Edison) to create the first x-ray cassette.

The Development of Modern Digital Imaging

- 13. The first digital imaging technology to be demonstrated, in 1979, was digital ______, using the TV camera signals from image intensifiers.
- 14. "PACS" stands for "______ and ______ and
- 15. _____ was appropriately dubbed as "cassette-less radiography."

Living with Radiation

- 17. Radiation can be broadly divided into three types:
 - 1.

 2.

 3.
- 18. One example of #1 above is _____
- 19. One example of #2 above is _____
- 20. One example of #3 above is _____
- 21. To be particularly harmful, radiation must be capable of ______ atoms.

Additional NOTES: