THE BASIC PHYSICS of RADIATION THERAPY Third Edition

.

.

THE BASIC PHYSICS of RADIATION THERAPY

Third Edition

By

JOSEPH SELMAN, M.D., F.A.C.R., F.A.C.P.

Consulting Medical Director East Texas Cancer Center Tyler, Texas

CHARLES C THOMAS • PUBLISHER Springfield • Illinois • U.S.A.

Published and Distributed Throughout the World by

CHARLES C THOMAS • PUBLISHER 2600 South First Street Springfield, Illinois 62794-9265

This book is protected by copyright. No part of it may be reproduced in any manner without written permission from the publisher.

© 1990 by CHARLES C THOMAS • PUBLISHER

ISBN 0-398-05685-4

Library of Congress Catalog Card Number: 90-10776

First Edition, 1960 Second Edition, 1976 Third Edition, 1990

With THOMAS BOOKS careful attention is given to all details of manufacturing and design. It is the Publisher's desire to present books that are satisfactory as to their physical qualities and artistic possibilities and appropriate for their particular use. THOMAS BOOKS will be true to those laws of quality that assure a good name and good will.

> Printed in the United States of America SC-R-3

Library of Congress Cataloging-in-Publication Data

Selman, Joseph. The basic physics of radiation therapy / by Joseph Selman. — 3rd ed. p. cm. Includes bibliographical references. ISBN 0-398-05685-4 1. Cancer — Radiotherapy. 2. Medical physics. I. Title. [DNLM: 1. Radiation. 2. Radiotherapy. WN 110 S468b] RC271.R3S46 1990 615.8'42 — dc20 DNLM/DLC for Library of Congress 90-10776 CIP

Preface to the Third Edition

Time has a way of slipping by: it is hard to realize that thirteen years have passed since the publication of the second edition, and twenty-nine since the first.

In this, the third edition, all material has undergone rewriting, with few exceptions. In fact, the book has been almost completely rewritten.

The International System of Metric Units (SI) has been used throughout, followed in most cases by the traditional units in parentheses. One exception is continuing use of the exposure unit, R, which still has a place in the calibration of ion chambers, in diagnostic radiology, and in specification of exposure-rate constant of discrete radioactive sources. To smooth the transition from the *rad* to the SI unit *gray* which is one hundred times larger, I have adopted a common convention using the centigray since it exactly equals the rad. Similarly, the centisievert replaces the rem, these also being equal. The SI becquerel is such an extremely small unit that it is much more convenient to use the relation 1 millicurie = 37 megabecquerels.

The introductory chapters on mathematics remain with only minor modifications. The slide rule has been deleted because of its replacement by the hand-held calculator and small computer.

Kilovoltage therapy continues to be covered because it still has a place in radiotherapy of superficial lesions that can often be treated more conveniently with this modality than with an electron beam or discrete radioactive sources. Emphasis has been essentially shifted toward highenergy photon beams, especially linear-accelerator generated megavoltage x rays, which have relegated cobalt-60 units to second-place status. This is not to say that cobalt teletherapy has become obsolete, since it still can play a role in treating some head-and-neck cancers and in management of skeletal metastases.

Much attention has been given to the AAPM Task Group 21 Protocol for calibrating high-energy photon and electron beams, with an attempt to make it more comprehensible to the radiation oncologist and radiation therapist. (The latter term replaces the previous one, radiation therapy technologist, because of its rapidly-growing acceptance by the radiology community.) Attention is also paid to the C_{λ} method of megavoltage beam calibration.

Electron-beam therapy has been expanded to become a separate chapter because of its increasing use in sophisticated radiotherapy, and wide availability of dual-mode linacs. Included are the physical aspects of the beam itself, in addition to its generation.

The material on radioactivity and nuclear physics has been reworked to make it more relevant to radiotherapy. Brachytherapy has been extensively rewritten and updated, with inclusion of computer-generated tables of dose distribution with radium to serve as a basis for the use of artificial radioactive substitutes in intracavitary and interstitial applications.

A chapter on radiopharmaceuticals begins with basic physical principles and elements of diagnostic instrumentation, to introduce the main subject of cancer therapy by ingestion and injection of radionuclides. Although such treatment usually falls within the province of nuclear medicine, radiation oncologists and therapists should have some familiarity with the subject.

Radiobiology is admittedly important for those working in the field of radiotherapy; this chapter still presents the basic concepts in relevant detail, with minor updating. However, greater attention has been paid to its applicability in radiotherapy.

A short chapter deals with the present status of heavy-particle teletherapy and brachytherapy, the latter with californium-252.

Finally, health physics is dealt with essentially as before, but with clarification of certain concepts and use of SI units.

The author herewith expresses his gratitude to Fritz Hager, Physicist at the East Texas Cancer Center (Tyler, Texas) for his permission to use his dose distribution tables for megavoltage x-ray beams and depth dose curves for electron beams. With few exception, the isodose charts in this book were obtained by Mr. Hager and by Mrs. Lisa Palmer, RT(T), Dosimetrist, using the AECL TP-11 therapy-planning computer, and they deserve the author's appreciation. Mr. Hager was also especially helpful with the section on practical dosimetry. However, the author takes full responsibility for any errors in the text.

Illustrations have been revised and many new ones added, with the superb artistry of Mr. Howard Marlin, to whom the author is most grateful. In conclusion, I wish to thank sincerely Mr. Payne Thomas, of Charles C Thomas, Publisher, for his patience, advice, and attention to detail during the long incubation period of this, the third edition.

JOSEPH SELMAN, M.D.

Preface to the Second Edition

A swould be expected, a number of advances have taken place in the physics of radiotherapy during the thirteen-year time span between the First and Second Editions. However, none of these may be considered monumental.

One significant change has been in units and terminology—the further clarification of the concepts of radiation exposure and dosage. While this seems to have been stabilized for the time being, there is on the horizon the threat of a more scientific, but at the same time a vastly more complex International System of Units (S.I.). This has already been accepted by the Soviet Union as well as the member countries of the European Economic Community. The S.I. will be touched upon, although there is still considerable resistance to its adoption in the United States.

In this edition, emphasis has been shifted to megavoltage radiation, and rightly so. Whereas formerly kilovoltage radiation (200 to 300 kV) had been the "backbone" of irradiation therapy the advent of cobalt 60 teletherapy, followed by the linac, has all but made kilovoltage radiation obsolete except for certain limited indications. A separate section has been added to cover electron beam therapy.

Because of growing interest in radiotherapy with heavy particles (high-LET radiation), a new chapter has been introduced to deal with this modality. Special emphasis in this regard has been placed on neutron and negative pion beams. This new chapter has been deliberately placed after that on radiobiology to provide the rationale for the use of high-LET radiation.

In general, the text has been almost completely rewritten, obsolete material eliminated, some sections combined, and some chapters rearranged. Although illustrations and tables from the First Edition have been retained wherever applicable, a number have been updated and new ones added.

The chapters covering radionuclides have been reworked and made

more comprehensive. The diagnostic use of radionuclides has been minimized and major attention directed to their therapeutic application.

Radiation protection in therapy, including radionuclides, has been expanded. An example of the computation of wall protective barriers has been included, for the author feels that the radiotherapist should have at least a basic understanding of how this is done, despite the fact that it is the ultimate responsibility of the radiation physicist.

In addition to the appreciative acknowledgement of the data furnished by the manufacturers of therapy equipment cited in the First Edition, the author wishes to thank Varian for kindly providing important material on their linac units through John C. Ford, Ph.D.; and to Atomic Energy of Canada, Ltd. Revision of earlier illustrations and preparation of new ones have again been admirably executed by A. Howard Marlin, for which the author is most appreciative.

Finally, many thanks are due Charles C Thomas, Publisher, in the person of Payne Thomas, for providing the opportunity and encouragement toward the realization of this Second Edition.

JOSEPH SELMAN, M.D.

Preface to the First Edition

Physics has played a dominant role not only in the birth and development of Therapeutic Radiology, but also in the charting of its future course. Every major advance in the technical aspects of radiation therapy has been predicated on new information in physics and engineering. This is evidenced particularly by the advent and popularization of supervoltage therapy and medical radioisotopes.

To the resident in radiology, physics often looms as a major obstacle in a varied and intensive program. So often, the newcomer to radiology is keenly aware of his deficient background in the physical sciences, making his task even more difficult. Yet, a secure foundation in radiologic physics is necessary both as a part of any successful training program and as a basis upon which to build future knowledge. The chore of keeping abreast of new developments in therapy methods and apparatus, and of appraising their value, is facilitated when the radiologist is adequately trained in physics. However, there is no consensus among teachers of radiology as to the amount of time that should be devoted to physics in the average residency training program. While some believe that there is already too much emphasis on the physical basis of radiotherapy, others are of the opinion that in many cases this is being grossly neglected. Despite this difference of opinion, there can be no question that the better the radiologist's training in physics, the more intelligently he can plan his therapy and the more satisfactory will be his relationship with his consulting physicist.

The purpose of this book is to explain the fundamental physical principles underlying radiation therapy in as comprehensive and comprehensible a manner as possible, without sacrificing accuracy for simplicity. Wherever possible, the material is presented from the standpoint of the radiologist who, from his own experience, is aware of the problems confronting the resident in radiology. It is hoped that such a presentation will be of benefit not only to the resident but also as a refresher course for the practicing radiologist. Furthermore, in view of the present trend toward two-year courses in schools of x-ray technology, this book may serve to direct more attention to the physics of radiation therapy in the x-ray technician's training program. To facilitate adaptation to various curricula, the chapters and sections are so arranged that certain material can be excluded without jeopardizing the continuity of the text. For this reason, a minimum of cross references has been used; each section has been made as complete as possible in its own right.

Since experienced teachers are well aware of the shortcomings of most neophytes where mathematics is concerned, the first chapter is devoted to the mathematical concepts pertinent to Therapeutic Radiology. Matter, energy, and radiations are then covered in survey fashion in order to acquaint the student with modern "pure" physics in preparation for the more specific aspects of radiation therapy physics. The production and properties of orthovoltage x-rays are reviewed briefly, since most students will have had a certain amount of instruction along these lines. The greatest emphasis is placed on the interactions of radiation with matter, radiation dosage and quality, therapy planning, supervoltage and telecurietherapy, radioactivity and nuclear physics, and radium and radioisotope therapy. Finally, detailed consideration is given to radiobiology and health physics since these are assuming a position of everincreasing importance not only in medicine, but in the world at large.

The Bibliography has been assembled at the end of the book in order to facilitate the location of references. A supplementary list of textbooks and other books for collateral reading has been added to broaden the scope of the student's background.

The kindness and interest of the following physicists, who reviewed portions of the manuscript and offered valuable suggestions, is acknowledged with sincere appreciation, although the author assumes full responsibility for any errors of commission or omission: Kenneth E. Corrigan, Ph.D.; Gerald E. Swindell, M.S.; Jack S. Krohmer, M.A.; and Lawrence Brown, Ph.D. Several commercial organizations have been most cooperative in furnishing data on various types of equipment and devices: Picker X-ray Corporation; High Voltage Engineering Corporation; General Electric X-ray Corporation; Tracerlab, Inc.; Victoreen Instrument Company; Nuclear-Chicago Corporation; Machlett Laboratories, Inc.; Gilbert X-ray Company of Texas; and North American Philips Company, Inc. Thanks are also due those authors and publishers who so generously permitted the use of their published data, as well as those whose original ideas and works bear the mark of anonymity. Special recognition must be given the artist, Howard Marlin, for his admirable execution of the illustrations from the sketches provided by the author. The author's secretary, Mrs. Charlene Lane, should also be mentioned with gratitude for her diligence in typing the major part of the manuscript, including the tables.

Finally, the interest and encouragement of Charles C Thomas, Publisher, and their most competent staff are greatly appreciated, as have been their invaluable suggestions during the preparation of the manuscript.

JOSEPH SELMAN, M.D.

CONTENTS

Page
Preface to the Third Editionv
Preface to the Second Editionix
Preface to the First Edition
Chapter
1. MATHEMATICAL BASIS OF RADIOTHERAPY3
Proportion
Direct proportion
Inverse proportion
Inverse square proportion10
Mathematical law of decay14
Significant figures17
Decimal system and scientific notation
Units of measurement
Standard units
Fundamental units
Derived units-general24
Derived units for electric currents
Units in Radiologic Physics
Temperature
Naming and use of units
Prefixes applied to defined units
International system of units (SI)
2. MATTER AND ENERGY
Historical background
Dalton's theory
Avogadro's law
Prout's hypothesis
Mendeléev's law
Arrhenius' theory

	Avogadro's number
	States of matter
	Atomic and molecular size
	Structure of the atom
	Present concept of atomic structure
	Nucleus
	Orbital electrons41
	Atomic number
	Mass number
	Equivalence of mass and energy
3.	THE NATURE OF RADIATION
	Types of radiation
	Electromagnetic radiation54
	Dual nature
	Particulate radiation
	Detection of particulate radiation
	Wilson cloud chamber
	Glaser bubble chamber
	Alpha particles
	Beta- particles
	Beta ⁺ particles
	Neutrons
	Orbital electrons
	Cosmic rays
	Summary
4.	KILOVOLTAGE X-RAY PRODUCTION,
	PROPERTIES, AND EQUIPMENT
	Historical introduction
	Evolution of the x-ray tube74
	Conditions required for the production of x rays
	Essential features of kilovoltage x-ray tubes (100–300 kVp)77
	Glass envelope
	Cathode assembly
	Anode (target)
	Large potential difference
	Small tube current

Contents	xvii	
Electron interactions with target atoms		
Bremsstrahlung	81	
Characteristic radiation	82	
Efficiency of x-ray production	84	
Properties of x rays		
Generation and regulation of kilovoltage	86	
High-voltage transformer	86	
Voltage-control devices	87	
Autotransformer	87	
Rheostat	88	
Regulation of tube current	89	
Rectification	89	
Cables	92	
Orthovoltage x-ray beams in radiotherapy	93	
Cones	93	
Lead aperture shields		
HIGH-ENERGY THERAPY UNITS:		
PARTICLE ACCELERATORS	96	
Telecurie therapy		
Cobalt-60 therapy equipment		
Source	98	
Housing		
Beam limitation (collimation)	101	
Cesium-137 teletherapy equipment	103	
Megavoltage x-ray generators	104	
Van de Graaff x-ray generator	104	
Linear accelerator	106	
Principle	106	
Internal components and operation	106	
External components	110	
X-ray target	111	
Beam-flattening filter	111	
Scattering foil or Scanning magnet	112	
Monitor ionization chambers	112	
Beam limitation (collimation)	113	
Field illuminator and rangefinder	113	

5.

	Shadow tray114
	Betatron
	Microtron
	Heavy charged-particle accelerators
	Cyclotron
	Synchrocyclotron
	Synchrotron
	Electron synchrotron
	Proton synchrotron
6.	INTERACTIONS BETWEEN IONIZING RADIATION AND MATTER
	Photon interactions with matter
	Photon-beam attenuation in matter
	Half-value layer
	Monoenergetic radiation130
	Polyenergetic radiation
	Derived attenuation coefficients
	Energy-transfer and absorption coefficients
	Interactions between photons and atoms
	Coherent scattering
	Photoelectric interaction
	Compton interaction with modified scattering (photons)142
	Compton mass-attenuation coefficient146
	Compton energy-transfer and absorption
	Pair and triplet production147
	Pair energy-transfer and absorption148
	Bremstrahlung in the Compton and pair processes 149
	Relative importance of various photon interactions
	Interactions of charged particles with matter151
	Alpha particles152
	Beta - particles
	Elastic interactions
	Inelastic interactions153
	Beta ⁺ particles
	Characteristic or fluorescent radiation154

7.	EXPOSURE AND EXPOSURE RATE
	OF PHOTON BEAMS
	Introduction
	Beam terminology158
	Photon fluence158
	Energy fluence
	Energy fluence rate (intensity; flux density)159
	Definition of the roentgen160
	Measurement of the roentgen162
	Capacitor ion chambers166
	Thimble and capacitor167
	Electrometer
	Units of radiation exposure and absorbed dose
	Roentgen (R)
	Centigray (rad)
	Factors affecting kilovoltage x-ray output
	Tube potential
	Tube current
	Distance
	Filtration
	Energy transfer
	Photon scatter
	Factors affecting gamma-ray exposure
8.	X-RAY QUALITY
	Analysis of x-ray beams
	Modification of kilovoltage beams by filters
	Specification of x-ray quality in radiotherapy
	Half-value layer
	Tube potential
	Other methods of specifying x-ray quality
	Equivalent constant potential
	Equivalent photon energy
9.	ABSORBED DOSE IN TELETHERAPY
	WITH PHOTONS
	Introduction
	Absorbed dose

Contents

xix

Transfer of photon energy to orbital electrons (kerma) 195
Absorption of electron energy by medium (absorbed dose). 195
Relation of absorbed dose to exposure
Absorbed dose in "free space"199
Absorbed dose in any medium
Bragg-Gray cavity theory201
Calibration of megavoltage photon beams
Modification of Bragg-Gray theory (Spencer-Attix)205
Conditions needed to implement AAPM
calibration protocol of 1983 206
Dose-to-plastic to dose-to-water correction
Beam quality (nominal accelerating potential)208
Dosimeters
Buildup caps
The cavity-gas calibration factor N_{gas}
Explanation of the basic equation in the AAPM protocol $\dots 213$
Steps in calibrating a megavoltage x-ray beam219
Calibration of a cobalt beam
Calibration of kilovoltage x-ray beam (100–300 kVp) $\ldots 224$
Calibration of very low-kilovoltage x-ray beams
Postscript to AAPM protocol
Other methods of measuring absorbed dose
CENTRAL-AXIS DOSE DISTRIBUTION
WITH PHOTON BEAMS
Introduction
Electron buildup
Backscatter and peak scatter factor
Quality of radiation238
Size of treatment field
Field shape241
Peak scatter factor
Percentage depth dose (PDD)242
Factors in PDD
Beam quality244
Depth of lesion
Size of treatment field
Source-surface distance (SSD)

10.

Tissue-air ratio (TAR)255
Factors in TAR
Beam energy257
Depth in medium258
Field area
Relationship between TAR and PDD259
Tissue-phantom ratio (TPR) and tissue-maximum ratio (TMR). 261
Corrections for tissue inhomogeneities
Correction for lung transmission
Correction for bone "shadowing"
Effect of air cavity on dose buildup
Exit dose
DOSE DISTRIBUTION WITH PHOTON BEAMS
Single beams
Factors affecting isodose distributions
Beam quality
percentage depth dose
depth of isodose curves
sharpness of beam margins
Penumbra
Beam-flattening filter
Field size
Multiple beams
Parallel opposed fields
Source-surface distance (SSD)
Source-axis distance (SAD)
Central axis doses
Composite isodose charts for several fields
Absorbed dose distributions at critical points only
Arrangement of multiple fields
Methods of beam modification
Wedge filters
Treatment distance with wedged fields
Types of wedges
Construction of wedges
Precautions in the use of wedges

11.

Contents

xxi

	Correction for sloping skin surfaces	299
	Bolus	299
	Tissue-compensating filters	300
	Isodose-shift method	301
	Rotation therapy	302
	Principles	302
	Practical aspects	305
	Size of field	305
	Size of penumbra	305
	Energy of radiation	305
	Source-axis distance	305
	Shape of patient	305
	Partial (arc) rotation	306
	Modification by wedge	306
	Scatter analysis	307
	Principles	307
	Average TMR for irregular fields	309
	Calculation of dose under a block	313
12.	THERAPY PLANNING WITH PHOTON BEAMS	315
	Introduction	315
	Tolerance doses	
	Megavoltage-beam parameters	317
	Beam energy	317
	Treatment distance	319
	Field flatness and symmetry	320
	Field flatness	
	Field symmetry	
	Beam delimitation (collimation)	
	Beam	
	Beam axis	
	Mechanical	
	Geometric	
	Dosimetric	
	Field size	
	Geometric	
	Physical	322

Penumbra
Geometric
Physical
Field matching
Contamination of photon beams by electrons and neutrons330
Electron contamination of photon beams
Neutron contamination of photon beams
Control of dose delivery
The therapy planning process
Outline of steps in therapy planning
Photography of patients
Localization of target volume
Simulation
Planning of dose distribution
Verification
Dosimetry
Localization of target volume
Simulation
Simulator features
Simulator use
Field shaping with custom blocks
Custom block-cutter
Fabrication of custom blocks
Execution of treatment plan
Selection of therapy beam
Electron beam
Photon beam
Beam modification
Wedges
Tissue compensators
Bolus
Selection of fields
Photography of fields
Dosimetry in fixed-beam therapy
Orthovoltage x-ray beam
Single fixed megavoltage-photon beam, SSD345

	Single fixed megavoltage-photon beam, SAD	. 345
	Parallel opposed beams, SSD	. 346
	Parallel opposed beams, SAD	. 346
	Three-field megavoltage-photon beams, SAD	. 346
	Dosimetry in moving-beam photon therapy	. 348
	Body contour	. 349
	Target volume	. 349
	Moving-beam positions	. 349
	Selection of critical dose points	. 349
	Average TMR at isocenter	350
	Isodoses and TMRS at critical points	350
	Moving-beam therapy, full 360° rotation	352
	Moving-beam arc therapy, 270° rotation	
	Moving-beam therapy with cobalt 60	
	Recommended normalization of isodose curves	354
	Examples of computer-generated isodose charts	355
13.	ELECTRON-BEAM THERAPY	362
	Introduction	362
	Electron-beam energy	363
	Electron ranges	364
	Percentage depth doses	366
	Electron-beam isodose curves	368
	Penumbra	372
	Modification of isodose curves	373
	Sloping surfaces	373
	Convex surfaces	
	Corrections for tissue inhomogeneities	376
	Bone	377
	Air cavity	377
	Position of virtual source	377
	Field-size dependence	379
	Output	379
	Percentage depth dose	379
	Equivalent squares	382
	Field shaping	382
	Adjoining-field therapy	

Alpha emission
Beta emission
Gamma emission
Gamma rays
Sources of gamma rays403
Nuclear decay403
Nuclear excitation403
Energy of gamma rays (methods of determination)404
Crystal diffraction404
Photoelectric interaction404
Internal conversion405
Pair spectrometry405
Scintillation spectrometry405
Induction of artificial radioactivity405
Activation of atoms-nuclear reactions
Neutron reactions
Slow-neutron reactions
Fast-neutron reactions
Proton reactions
The radioactive decay process
Displacement law
Radioactive decay schemes
Units of activity
Mathematical law of decay-decay constant
Half-life
Average life
Specific activity
Exposure-rate constant
Radioactive equilibrium
Secular
Transient
Nuclear reactor
The fission process
Nuclear reactor operation
Nuclear fusion
Practical applications of nuclear reactor

15.	BRACHYTHERAPY WITH RADIUM AND ARTIFICIAL RADIONUCLIDES440
	Historical survey440
	Radium
	Types of radium applicators
	Needles
	Tubes
	Dosimetry in brachytherapy445
	Introduction
	Distribution systems in brachytherapy445
	Derivation of distribution systems
	Exposure-rate constant
	Exposure rates near linear sources
	Basic interval method450
	Modified interval method452
	Conversion of exposure to absorbed dose
	The time-intensity factor
	Intracavitary therapy with linear sources
	Simple linear arrangement
	Complex array of sources
	Interstitial brachytherapy466
	Paterson-Parker (Manchester system)
	Correction factors
	Planar implant
	Volume implant
	Quimby system
	Planar implant
	Volume implant
	Artificial radionuclides in interstitial therapy
	Surface brachytherapy with gamma rays
	Methods of verifying implants
	Manual
	Computer-generated
	Dose specification for radium substitutes
	Summary of radionuclides available for brachytherapy 494
	Surface therapy with beta particles

Contents

xxvii

		⁹⁰ Strontium- ⁹⁰ Yttrium ophthalmic applicator
	16.	CANCER THERAPY WITH
	10.	RADIOPHARMACEUTICALS
		Introduction
		Radionuclide instrumentation
		Radiation detectors
		G–M counter
		Scintillation counter
		Well counter
		Sources of error in counting
		Efficiency and sensitivity of counters
		Practical aspects of counting
		Geometric factors
		Methods of counting
		Absolute counting
		Comparative counting
		Whole-organ counting
		Decay constants and half-lives
		Systemic therapy with radionuclides
		Dosage
		Absorbed dose from beta emitters
		Absorbed dose from gamma emitters518
		Examples of systemic therapy with radionuclides519
		Radioactive iodine (¹³¹ I)
		hyperthyroidism
		thyroid cancer
		Radioactive phosphorus (³² P)
		polycythemia vera
		essential thrombocythemia
•		metastatic carcinoma in bone
		Radiocolloid ³² P therapy of malignant effusions
	17.	RADIOBIOLOGY
		Physical basis of radiobiology
		Introduction
		Absorbed dose

xxviii

Linear energy transfer (LET)
Relative biologic effectiveness (RBE)
The Cell
Normal anatomy of the cell
Nucleus
Cytoplasm
Cellular renewal
Elementary genetics
Cell reproduction – mitosis
The "resting" or interphase period
Meiosis
Malignant cells
Modes of action of ionizing radiation on cells
Direct action
Indirect action
Formation of free radicals and aqueous electrons541
Fate of free radicals and aqueous electrons
Fluid-flow theory544
Radiation-induced injuries at the cellular level
Cell death
Reproductive death
Genetic death
Lytic death
Gene mutations and chromosome aberrations
Mutations
Aberrations545
Mitotic inhibition
Assessment of cellular radiosensitivity: cell survival curves 547
Shoulder portion
Terminal exponential portion548
Effect of high-LET radiation550
Implications of exponential response
Mean lethal dose (D_o)
Quasi-threshold dose554
Survival of irradiated cells556
Modification of cellular response to irradiation

Contents

xxix

Fractionation and repair558Position of cell in reproductive cycle559
Oxygenation
Ploidy
Radiation effects on cytoplasm
Growth of tumors
Doubling time
Potential doubling time565
Response of neoplasms to irradiation
Radiosensitivity
Oxygen effect
Dose fractionation
Fractionation schedule in radiotherapy571
Time-dose regression curves
The four Rs574
Repair of sublethal injury574
Reoxygenation
Repopulation
Redistribution
Volume effect
Radiation quality (low- and high-LET)578
Dose-rate effect
Abscopal effect
Therapeutic ratio
Normal-tissue tolerance dose
Tumor-lethal dose
Hyperfractionation
Nominal standard dose (NSD)
Full tolerance
Partial tolerance
Acute whole-body radiation syndromes
Median lethal dose (LD ₅₀)592
Description of acute radiation syndromes (ARS)
Subclinical syndrome
Hematopoietic syndrome
Gastrointestinal syndrome596

Contents

	Neurovascular syndrome
	Cell population kinetics as the basis for ARS
	Modification of cellular injury601
	Physical modifiers
	Chemical modifiers
	Radiation sensitizers602
	Radiation protectors
	Physiologic modifiers604
18.	RADIOTHERAPY WITH HEAVY-PARTICLE BEAMS606
	Introduction
	Neutron-beam therapy
	Sources of neutrons
	Deuterium-tritium generator
	Cyclotron generator
	Physical properties of neutrons
	Depth-dose characteristics of neutron beams
	Isodose distributions
	Penumbra
	Tissue inhomogeneities
	Radiobiology of neutrons
	Oxygen effect
	Relative biologic effectiveness (RBE)610
	Oxygen enhancement ratio (OER)610
	Cell cycle
	Cell survival curves
	Neutron brachytherapy (californium 252)
	Negative pi meson (pion) therapy615
	Proton-beam therapy
	Helium-ion beam therapy619
19.	QUALITY ASSURANCE
	Physical factors
	Dose-rate stability
	Timer and monitor ionization chamber
	Treatment distance
	Field size
	Beam alignment

Beam quality
Field flatness and symmetry
Collimator-rotation readout
Gantry rotation readout
Stability of isocenter
Mechanical and electrical safety
Area monitoring
Control-panel meters
Labeling of auxiliary devices
Patient communication
Personnel factors
Assessment and localization
Dosimetry
Errors in patient setup
PROTECTION IN RADIOTHERAPY:
HEALTH PHYSICS
Dose equivalent
Background radiation
External sources
Cosmic rays
Terrestrial radiation634
Atmospheric radiation
Internal sources
Maximum permissible dose-equivalent (MPD)637
Accumulated dose (occupational)
Emergency exposure (occupational)638
Medical exposure (radiation workers)
Exposure of persons outside controlled areas
Summary of NCRP recommendations
Measurement of ambient radiation exposure640
Personnel monitoring640
Film badge640
Self-reading pocket dosimeter641
Pocket chamber
Thermoluminescent dosimeter (TLD)642
Area radiation monitors642

20.

Protection surveys
Warning signs
Protective measures in photon-beam therapy645
Beam componenents
Useful beam645
Leakage radiation
Scattered radiation
Stray radiation646
Radiation sources
Orthovoltage x-ray tubes646
Linear accelerator housing646
Telecobalt and telecesium sources
Protective wall barriers
Primary
Secondary
Location and specification of wall barriers
Application of inverse square law
Restriction in direction of useful beam
Attenuation of radiation by scattering
Computation of wall barrier for 8-hour day
Work load (W)
Use factor (U)
Occupancy factor (T)
Use of most efficient material
Allowance of safety factor
Example of computation for a teletherapy room
Primary protective barrier
Secondary protective barrier
barrier thickness for scattered radiation
barrier thickness for leakage radiation
Protective measures in brachytherapy
Protection against whole-body radiation
Storage of brachytherapy sources
Manipulation of brachytherapy sources
Transportation of brachytherapy sources
Hazards to nursing personnel in brachytherapy
rular as to nurshing personner in bruchy therapy

xxxiii

Protection against local exposure	6
Hazards from radionuclides in teletherapy	
Personnel hazards in nuclear medicine	9
External hazards (whole body)67	0
Gamma radiation	0
Beta radiation67	2
External hazards (local)67	2
Internal hazards67	3
Inhalation67	3
Ingestion	3
Absorption through skin67	4
Laboratory design and facilities	6
Shielding of stored radionuclides	6
Decay chamber	7
Area radiation monitoring67	7
Disposal of radioactive wastes	8
Sewage disposal67	8
Incineration	8
Decontamination	9
Recommendations for nursing procedures67	9
Special instructions with radioidine 131 (¹³¹ I)	0
Special instructions with radiophosphorus 32 (³² P)68	2
Special instructions with radium substitutes	3
Unsafe procedures in handling unsealed radionuclides 68	3
Inadequate planning of procedures	3
Improper monitoring68	3
Inadequate shielding	3
Inadequate use of trays and paper covering	\$4
Pipetting of solutions by mouth	\$4
Poor work habits	\$4
Inadequate use of protective clothing	\$4
Improper disposal	34
Inadequate fume hoods	\$4
Changing types or levels of activity and procedures68	34
Failure to maintain detailed radiation safety records68	
Failure to post signs	34

Appendix	685
Central axis dose distributions (Tables 1–14)	
Useful physical data (Table 15)	
Useful equations (Table 16)	709
The Greek alphabet (Table 17)	
References	715
Index	

Contents

xxxv

THE BASIC PHYSICS of RADIATION THERAPY Third Edition

CHAPTER 1

MATHEMATICAL BASIS OF RADIOTHERAPY

 \mathbf{F} rom its earliest days physics has evolved hand-in-hand with mathematics to reach its present advanced position. Moreover, mathematics continues to serve the physicist in a number of ways. Not only does it facilitate the comprehension of physical principles, but it also aids in the correlation of experimental and practical data. In some instances, it may even entail the development of new concepts.

For the student of radiologic physics, mathematics is essential both as an aid to learning and as a means of handling the data pertinent to radiation therapy. Since an insight into the physics of radiation therapy may be gained without resorting to higher mathematics, only those mathematical processes that are applicable to this field will be presented here.

PROPORTION

One of the more fundamental mathematical concepts is *proportion*, which simply expresses the equality of two *ratios* or *fractions*. Three main types of proportion are used in radiologic physics: (1) simple direct proportion, (2) simple inverse proportion, and (3) inverse square proportion.

Direct Proportion. One may represent simple *direct proportion* in three ways: *algebraic* or *arithmetic*, *geometric*, and *graphic*.

1. Algebraic or Arithmetic Method. At a half price sale the ratio $\frac{1}{2}$ indicates the fraction by which the list price would be reduced on any given article. Thus, if an item were marked \$2.00, its sale price would be \$1.00. To represent such a simple situation in algebraic terms immediately establishes the basic concept of proportion. In a half-price sale, if the list price of a given item is \$6.00, its sale price x can be found according to the proportion:

$$\frac{x}{6} = \frac{1}{2}$$

Solving this equation by cross-multiplication,

$$2x = 6$$

x = 3 dollars, the sale price

Direct proportion can be stated *algebraically* as follows:

$$\frac{y}{x} = \frac{b}{a} \tag{1}$$

This means that y is as many times greater than x, as b is greater than a. The ratio y/x equals the ratio b/a. If any three of these factors are known, the fourth can easily be determined by equation (1).

Note that in any given proportion, the ratio is constant. Thus, in equation (1), b/a is a constant. Substituting the constant k for b/a in equation (1),

$$\frac{y}{x} = k$$

$$y = kx$$
(2)

k is called the *constant of proportionality*. Whenever a variable such as y (known as the *dependent variable*) is proportional to another variable such as x (known as the *independent variable*), it equals a constant times the variable, as noted in equation (2). y is said to be a function of x, often expressed as y = f(x). Only if you know the constant of proportionality, can you find the dependent variable for a given independent variable.

2. Geometric Method. When two triangles have the same shape, but differ in size, they are said to be *similar triangles*. The corresponding sides (ie, the sides opposite the equal angles) are proportional. Figure 1.01 shows the proportionality of the corresponding sides in the similar triangles *abc* and *ABC*:

$$AB/ab = AC/ac$$
$$AB/ab = BC/bc$$
$$BC/bc = AC/ac$$

In other words, the ratio of any two corresponding sides is the same as that of any other two corresponding sides.

Since the corresponding sides of similar triangles are also proportional to their heights, one can apply this principle to the relationship

FIGURE 1.01. Similar triangles *abc* and *ABC*. AB/ab = BC/bc = CD/cd because the corresponding sides are directly proportional when the corresponding angles are equal.

between the width of an x-ray beam and the distance from the source. Figure 1.02 shows a smaller triangle *ABC* superimposed on the larger triangle *ADE*; the sides *AC* and AE represent the edges of a beam. Triangle *ABC* is similar to triangle *ADE*. Therefore the widths of the beam such as *BC* and *DE* are proportional to their respective heights d_1 and d_2 . Thus,

$$BC/DE = d_1/d_2$$

FIGURE 1.02. The corresponding sides of similar triangles are proportional to their heights. This principle can be applied to the relation between the width of an x-ray beam and its distance from the source. The smaller triangle ABC is superimposed on the larger triangle ADE, and the sides of the triangles represent the edges of the diverging beam. Since triangle ABC is similar to triangle ADE, the widths of the beam such as BC and DE are proportional to their respective distances (heights d_1 and d_2), so $BC/DE = d_1/d_2$, when the beam originates at a point source.

when the beam originates from a point source.

3. *Graphic Method.* A simple direct proportion may be expressed as a graph. For example, the width of an x-ray beam is directly proportional to the source-skin distance. If a series of measurements of beam width as a function of source-skin distance is arranged as in Table 1.01, you can see that the ratio of any beam width to its corresponding distance, such as \$/10, is the same as that of any other, such as 24/30. In both cases, the ratio reduces to 4/5.

TABLE 1.01 DATA ILLUSTRATING SIMPLE DIRECT PROPORTION: THE RELATIONSHIP OF BEAM WIDTH TO DISTANCE FROM SOURCE

Source-Skin	Ratio of Beam Width	
Distance	Beam Width	to Distance
ст	ст	
10	8	8/10 = 4/5
20	16	16/20 = 4/5
30	24	24/30 = 4/5
40	32	32/40 = 4/5
50	40	40/50 = 4/5

This information, plotted as a graph in Figure 1.03, generates a curve—a straight line with its origin at 0. The *slope* of the curve is the ratio of the vertical distance of any given point to its *horizontal distance* from the origin (ie, the ratio of the y to the x coordinate). For example, the vertical dotted line intersects the curve at twenty-four units above the origin, and also intersects the horizontal line at thirty units from the origin. The *slope* is therefore 24/30 = 4/5. Stated algebraically, if y is the field width and x is the source-skin distance,

$$y = \frac{4}{5}x$$

Note that the constant of proportionality and the slope of the curve are exactly the same, in this case $\frac{4}{5}$. Thus, for any distance *x*, the field width *y* can readily be determined either from the graph or from its algebraic counterpart.

Simple direct proportion has wide application in radiology. For example, all other factors being equal, radiation dose D is proportional to the exposure time t. Therefore, the equation for dose as a function of time is