ANAEROBIC BACTERIA

Role in Disease

EDITED BY

ALBERT BALOWS, Ph.D.

Chief Bacteriology Division Bureau of Laboratories Center for Disease Control Public Health Service U. S. Department of Health, Education, and Welfare Atlanta, Georgia

RAYMOND M. DEHAAN, M.D.

Clinical Infectious Diseases Research The Upjohn Company Departments of Infectious Diseases and Chnical Pharmacology Bronson Methodist Hospital Kalamazoo, Michigan

LUCIEN B. GUZE, M.D.

Research and Education Veterans Administration Hospital (Wadsworth) Los Angeles, California Infectious Disguses Division Harbor Genefal Hospital Torrance, California Department of Medicine, UCLA Los Angeles, California

rican R Lecture Deries

V., R. DOWELL, JR., Ph.D.

Enterobacteriology Branch Bacteriology Division Bureau of Laboratorius Center for Disease Control Public Health Service U.S. Department of Health, Education, and Welfare Atlanta, Georgia

ANAEROBIC BACTERIA: Role In Disease Publication Number 940

AMERICAN LECTURE SERIES®

A Monograph in

The BANNERSTONE DIVISION of AMERICAN LECTURES IN CLINICAL MICROBIOLOGY

Editor

ALBERT BALOWS, Ph.D.

Bacteriology Division Bureau of Laboratories Center for Disease Control Public Health Service U.S. Department of Health, Education, and Welfare Atlanta, Georgia

ANAEROBIC BACTERIA: Role In Disease

Edited by

ALBERT BALOWS, Ph.D.

Bacteriology Division Bureau of Laboratories Center for Disease Control Public Health Service U.S. Department of Health, Education, and Welfare Atlanta, Georgia

RAYMOND M. DEHAAN, M.D. V.R. DOWELL, JR., Ph.D.

Clinical Infectious Diseases Research The Upjohn Company Department of Infectious Diseases and Clinical Pharmacology Bronson Methodist Hospital Kalamazoo, Michigan Enterobacteriology Branch Bacteriology Division Bureau of Laboratories Center for Disease Control Public Health Service U.S. Department of Health, Education, and Welfare Atlanta, Georgia

LUCIEN B. GUZE, M.D.

Research and Education Veterans Administration Hospital (Wadsworth) Los Angeles, California Infectious Diseases Division Harbor General Hospital Torrance, California Department of Medicine, UCLA Los Angeles, California

CHARLES C THOMAS • PUBLISHER Springfield • Illinois • U.S.A.

Published and Distributed Throughout the World by CHARLES C THOMAS • PUBLISHER Bannerstone House 301-327 East Lawrence Avenue, Springfield, Illinois, U.S.A.

This book is protected by copyright. No part of it may be reproduced in any manner without written permission from the publisher.

© 1974, by CHARLES C THOMAS • PUBLISHER

ISBN 0-398-03074-X Library of Congress Catalog Card Number: 74–1009

With THOMAS BOOKS careful attention is given to all details of manufacturing and design. It is the Publisher's desire to present books that are satisfactory as to their physical qualities and artistic possibilities and appropriate for their particular use. THOMAS BOOKS will be true to those laws of quality that assure a good name and good will.

Printed in the United States of America

BB-14

Library of Congress Cataloging in Publication Data

International Conference on Anaerobic Bacteria, Center for Disease Control, 1972. Anaerobic bacteria: role in disease

(American lecture series, publication no. 940. A monograph in the Bannerstone division of American lectures in clinical microbiology)

Bacteria, Anaerobic—Congresses.
Bacterial, Pathogenic—Congresses.
Bacterial diseases— Congresses.
Balows, Albert, ed. II. Title.

[DNLM: 1. Bacterial infections—Congresses. WC200 I58a 1972]
QR89.5.I56 1972 616.01'4 74–1009
ISBN 0–398–03074-X

CONTRIBUTORS

WILLIAM A. ALTEMEIER, M.D.

Department of Surgery University of Cincinnati College of Medicine Cincinnati, Ohio

HOWARD R. ATTEBERY, D.D.S.

Anaerobic Bacteriology Laboratory Wadsworth Hospital Center, Veterans Administration Department of Pediatric Dentistry UCLA School of Dentistry Los Angeles, California

ALBERT BALOWS, Ph.D.

Bacteriology Division Bureau of Laboratories Center for Disease Control Atlanta, Georgia

JOHN G. BARTLETT, M.D.

Department of Medicine UCLA School of Medicine Infectious Disease Section Veterans Administration Hospital Sepulveda, California

HENRI BEERENS, Ph.D.

Laboratorie des Anaerobis Institute Pasteur de Lille Lille, France

HARVEY R. BERNARD, M.D.

Department of Surgery The Albany Medical College of Union University Albany, New York

KENNETH S. BRICKNELL

Anaerobic Bacteriology Laboratory Wãdsworth Hospital Center Veterans Administration Los Angeles, California

W.H. BRUMMELKAMP, M.D., Ph.D.

Universiteitsklinek voor Heelkunde Binnengasthuis, Amsterdam The Netherlands

ELIZABETH P. CATO, M.S.

Anaerobe Laboratory Virginia Polytechnic Institute and State University Blacksburg, Virginia

MICHAEL CHERINGTON, M.D.

Division of Neurology University of Colorado Medical Center Denver, Colorado

V

ANTHONY W. CHOW, M.D.

Infectious Diseases Division Harbor General Hospital Torrance, California Department of Medicine, UCLA Los Angeles, California

DAN DANIELSSON, M.D., Ph.D.

Department of Clinical Bacteriology and Immunology Regional Hospital Orebro S-701 85 Sweden

RAYMOND M. DeHAAN, M.D.

Clinical Infectious Diseases Research The Upjohn Company Kalamazoo, Michigan

V.R. DOWELL, Jr., Ph.D.

Bacteriology Division Bureau of Laboratories Center for Disease Control Atlanta, Georgia

B.S. DRASAR, Ph.D.

Bacteriology Department, Wright-Fleming Institute St. Mary's Hospital Medical School London W2 1PG, England

ANN FALLON

Infectious Disease Section, Medical Service Wadsworth Hospital Center Veterans Administration and UCLA School of Medicine Los Angeles, California

JOEL FELNER, M.D.

Department of Medicine Emory University School of Medicine Atlanta, Georgia

SYDNEY M. FINEGOLD, M.D.

Infectious Disease Section Wadsworth Hospital Center, Veterans Administration Department of Medicine UCLA Medical Center Los Angeles, California

LUCILLE K. GEORG, Ph.D.

Mycology Branch, Laboratory Division Center for Disease Control Atlanta, Georgia

RONALD J. GIBBONS, Ph.D.

Forsyth Dental Center Boston, Massachusetts

C. GOMPERTZ, Ph.D.

Royal Post Graduate Medical School Henfield Hospital London W12, England

JAY S. GOODMAN, M.D.

Mercy Hospital, Inc. Department of Medicine University of Maryland School of Medicine Baltimore, Maryland

SHERWOOD L. GORBACH, M.D.

Infectious Disease Section Veterans Administration Hospital Sepulveda, California

Contributors

LUCIEN B. GUZE, M.D.

Research and Education Veterans Administration Hospital (Wadsworth) Los Angeles, California Infectious Diseases Division Harbor General Hospital Torrance, California Department of Medicine, UCLA Los Angeles, California

A.H.W. HAUSCHILD, Ph.D.

Food Research Laboratories Department of National Health and Welfare Tunney's Pasture Ottawa, Ontario, Canada

PAUL E. HERMANS, M.D.

Department of Laboratory Medicine Mayo Clinic Rochester, Minnesota

M.J. HILL, ,Ph.D.

St. Mary's Hospital Medical School Wright-Fleming Institute Paddington London W2, England

TOR HOFSTAD, M.D.

Department of Microbiology The Gade Institute University of Bergen Schools of Medicine and Dentistry 500 Bergen, Norway

LILLIAN V. HOLDEMAN, Ph.D.

Anaerobe Laboratory Virginia Polytechnic Institute and State University Blacksburg, Virginia

EDWARD W. HOOK, M.D.

Department of Internal Medicine University of Virginia School of Medicine Charlottesville, Virginia

YUNG-YUAN KWOK

Anaerobic Bacteriology Laboratory Wadsworth Hospital Center, Veterans Administration Los Angeles, California

ADOLF W. KARCHMER, M.D.

Department of Medicine Harvard Medical School Infectious Disease Unit Massachusetts General Hospital Boston, Massachusetts

DWIGHT W. LAMBE, Jr., Ph.D.

Department of Pathology Emory University Hospital Atlanta, Georgia

PHILLIP I. LERNER, M.D.

Infectious Disease Section Veterans Administration Hospital Cleveland, Ohio

WALTER J. LOESCHE, D.M.D., Ph.D.

Department of Oral Biology University of Michigan School of Dentistry Ann Arbor, Michigan

WILLIAM J. MARTIN, Ph.D.

Section of Clinical Microbiology Department of Laboratory Medicine Mayo Clinic and Mayo Foundation Rochester, Minnesota

T.C. MICHAELSON, M.D.

Section of Infectious Diseases Temple University Health Sciences Center Philadelphia, Pennsylvania

W.E.C. MOORE, Ph.D.

Anaerobe Laboratory Virginia Polytechnic Institute and State University Blacksburg, Virginia

JEANETTE NORSEN, M.A.

Infectious Disease Service Cook County Hospital Chicago, Illinois

SVEN PERSSON

Department of Clinical Bacteriology and Immunology Regional Hospital Orebro S-701 85 Sweden

S. MADLI PUHVEL, Ph.D.

Department of Medicine Division of Dermatology UCLA School of Medicine Los Angeles, California

RONALD M. REISNER, M.D.

Department of Medicine Division of Dermatology UCLA School of Medicine Los Angeles, California

CHARLES W. RIETZ, M.D.

Department of Pathology Emory University Hospital Atlanta, Georgia

JON E. ROSENBLATT, M.D.

Infectious Disease Section Veterans Administration and UCLA School of Medicine Los Angeles, California

EDWARD B. ROTHERAM, Jr., M.D.

> Division of Infectious Diseases Allegheny General Hospital Pittsburgh, Pennsylvania

H. SCHJÖNSBY, M.D.

Royal Post Graduate Medical School Henfield Hospital London W12, England

JOSEPH W. SEGURA, M.D.

Department of Urology Mayo Clinic and Mayo Foundation Rochester, Minnesota

JOHN C. SHERRIS, M.D.

Department of Microbiology University of Washington School of Medicine Seattle, Washington

LOUIS DS. SMITH, Ph.D.

Anaerobe Laboratory Virginia Polytechnic Institute and State University Blacksburg, Virginia

viii

Contributors

ALEX C. SONNENWIRTH, Ph.D.

Departments of Microbiology and Pathology Washington University School of Medicine The Jewish Hospital of St. Louis St. Louis, Missouri

EARLE H. SPAULDING, Ph.D.

Department of Microbiology and Immunology Temple University Health Sciences Center Philadelphia, Pennsylvania

STUART E. STARR, M.D.

Department of Pediatrics Emory University School of Medicine Atlanta, Georgia

PAUL T. SUGIHARA

Anaerobic Bacteriology Laboratory Wadsworth Hospital Center Veterans Administration Los Angeles, California

VERA L. SUTTER, Ph.D.

Anaerobic Bacteriology Laboratory Wadsworth Hospital Center Veterans Administration Los Angeles, California

MORTON N. SWARTZ, M.D.

Department of Medicine Harvard Medical School Infectious Disease Unit Massachusetts General Hospital Boston, Massachusetts

ROBERT M. SWENSON, M.D.

Section of Infectious Diseases Temple University Health Sciences Center Philadelphia, Pennsylvania

SOAD TABAQCHALI, M.D.

Department of Medical Bacteriology St. Bartholomew's Hospital London, EC1A 7BE, England

HARAGOPAL THADEPALLI, M.D.

Infectious Disease Section Veterans Administration Hospital Sepulveda, California

CLYDE THORNSBERRY, Ph.D.

Bacteriology Branch Laboratory Division Center for Disease Control Atlanta, Georgia

KAZUE UENO, D.V.M., Ph.D.

Department of Bacteriology Gifu University School of Medicine Gifu City, 500, Japan

VALERIE VARGO, M.S.

Department of Microbiology and Immunology Temple University Health Sciences Center Philadelphia, Pennsylvania

DAVID H. VROON, M.D.

Department of Pathology Emory University Hospital Atlanta, Georgia

JOHN A. WASHINGTON, II, M.D.

Section of Clinical Microbiology Department of Laboratory Medicine Mayo Clinic and Mayo Foundation Rochester, Minnesota

ARNOLD N. WEINBERG, M.D.

Department of Medicine The Cambridge Hospital Harvard Medical School Cambridge, Massachusetts

TRACY D. WILKINS, Ph.D.

Anaerobe Laboratory Virginia Polytechnic Institute and State University Blacksburg, Virginia

A.T. WILLIS, M.D., Ph.D.

Public Health Laboratory Luton and Dunstable Hospital Luton, LU4 ODZ, England

х

FOREWORD

The genesis of this series, The American Lecture Series in Clinical Microbiology, stems from the concerted efforts of the Editor and the Publisher to provide a forum from which well-qualified and distinguished authors may present, either as a book or monograph, their views on any aspect of clinical microbiology. Our definition of clinical microbiology is conceived to encompass the broadest aspects of medical microbiology not only as it is applied to the clinical laboratory but equally to the research laboratory and to theoretical considerations. In the clinical microbiology laboratory we are concerned with differences in morphology, biochemical behavior and antigenic patterns as a means of microbial identification. In the research laboratory or when we employ microorganisms as a model in theoretical biology, our interest is often focused not so much on the above differences but rather on the similarities between microorganisms. However, it must be appreciated that even though there are many similarities between cells, there are important differences between major types of cells which set very definite limits on the cellular behavior. Unless this is understood it is impossible to discern common denominators.

We are also concerned with the relationships between microorganism and disease—any microorganism and any disease. Implicit in these relations is the role of the host which forms the third arm of the triangle: microorganism, disease and host. In this series we plan to explore each of these: singly where possible for factual information and in combination for an understanding of the myriad of interrelationships that exist. This necessitates the application of basic principles of biology and may, at times, require the emergence of new theoretical concepts which will create new principles or modify existing ones. Above all, our aim is to present well-documented books

Anaerobic Diseases

which will be informative, instructive and useful, creating a sense of satisfaction to both the reader and the author.

Closely intertwined with the above raison d'etre is our desire to produce a series which will be read not only for the pleasure of knowledge but which will also enhance the reader's professional skill and extend his technical ability. The American Lecture Series in Clinical Microbiology is dedicated to biologists—be they physicians, scientists or teachers—in the hope that this series will foster better appreciation of mutual problems and help close the gap between theoretical and applied microbiology.

This book represents the published proceedings of an International Conference on Anaerobic Bacteria. It includes major aspects of the bacteriological and clinical considerations of the organisms and disease entities of what constitutes a most important segment of infectious diseases today. The Conference was held at the Center for Disease Control in Atlanta, Georgia, in November 1972, and was jointly sponsored by Emory University, The Upjohn Company, and the Center for Disease Control. The stimulus for the Conference came from the increasing isolation of anaerobic bacteria from clinical specimens and a mounting awareness of their association with significant numbers of infectious and other diseases. The Conference provided a meaningful interchange of information on the bacteriology and clinical relevance of anaerobes with a clear indication that this interchange paved the way for a better understanding of the microorganisms and the diseases they cause. There was no question but what the proceedings needed to be published in a permanent form so that the information could be widely disseminated and shared with clinicians and microbiologists throughout the world. It seemed only proper that The American Lecture Series in Clinical *Microbiology* serve as the vehicle for this purpose. One need only to glance at the Contents to realize the extent of coverage of the subject and the expertise of the authors in their presentations dealing with this most intriguing area of infectious disease. This book is designed not only to share the data and information that were presented, but also to provide direction

Foreword

for additional research leading to improved diagnoses and therapy. If these objectives are met (and all indications are that they will be), then this book will have well served its purpose.

Albert Balows, Ph.D. *Editor*

PREFACE

The decision to publish the proceedings of the International Conference on Anaerobic Bacteria was made once it became apparent that the nature and scope of the material presented by the distinguished group of speakers would be in large demand, not only by those who attended the Conference, but also by clinicians and microbiologists who daily face the problem of anaerobic bacterial infections. The Editors soon recognized that their responsibilities were many and diversified. The publication of these proceedings which represents the culmination of the Conference, was accomplished with the excellent support and collaborative efforts of many individuals. There are three who are particularly deserving of mention because, without their "behind the scenes" efforts, the Conference and this published account of that Conference would have been most difficult to achieve and assuredly would not have had the measure of success that it has been accorded.

To Mrs. Ruby W. Caplan of the Center for Disease Control we express our sincere thanks and gratitude for the excellent manner in which she managed the entire Conference. To Mrs. Diana Schellenberg of The Upjohn Company who served as the Editors' editor with her mastery and skill in handling the manuscripts we are most grateful and thankful. We are indebted to Dr. Dwight W. Lambe, Jr., of Emory University for his capable assistance in the planning of the Conference and in handling the fiscal aspects of the Conference.

> Albert Balows Raymond M. DeHaan V.R. Dowell, Jr. Lucien B. Guze

XV

CONTENTS

CONTRIBUTORS	v
FOREWORD	xi
PREFACE	XV
Chapter	
I. ANAEROBIC BACTERIA—PERSPECTIVES	

A. Balows	
-----------	--

PART I

NOMENCLATURE, TAXONOMY AND GENERAL METHODOLOGY Moderators: M. Bryant and R. Hungate

II. Collection of Specimens and Primary Isolation	
V.R. Dowell, Jr.	9
III. Comparison of Methods for Isolation of	
Anaerobic Bacteria	
J.E. Rosenblatt, A. Fallon and S.M. Finegold	21
IV. A Comparison of Two Procedures for	
Isolating Anaerobic Bacteria from Clinical	
Specimens	
E.H. Spaulding, V. Vargo, T.C. Michaelson	
and R.M. Swenson	37
V. Comparison of Isolation Techniques	
for Anaerobic Bacteria	
S.E. Starr	47
VI. Identification of Anaerobes from Clinical	
INFECTIONS	
W.E.C. Moore, E.P. Cato and	
L.V. Holdeman	51
VII. METHODS AND TECHNIQUES FOR IDENTIFICATION:	
Invited Discussion	
V.R. Dowell, Jr.	59
VIII. CURRENT CLASSIFICATION OF CLINICALLY	
Important Anaerobes	
L.V. Holdeman, E.P. Cato and W.E.C. Moore .	67

xviii Anaerobic Diseases	
Chapter	Page
IX. CURRENT CLASSIFICATION OF CLINICALLY	
Important Anaerobes: Invited Discussion	
S.M. Finegold	75

PART II

INTESTINAL FLORA AND ASSOCIATION WITH DISEASE Moderators: R.M. DeHaan and W. McCabe

Х.	Normal Human Intestinal Flora H.R. Attebery, V.L. Sutter and S.M. Finegold	81
XI.	Role of Microbial Alterations in the Path- ogenesis of Intestinal Disorders S. Tabaqchali, H. Schjonsby and D. Gompertz	99
XII.	BACTERIA AND THE ETIOLOGY OF CANCER OF THE LARGE INTESTINE M.J. Hill and B.S. Drasar	119
XIII.	COMPARISON OF CHARACTERISTICS OF GRAM- NEGATIVE ANAEROBIC BACILLI ISOLATED FROM FECES OF INDIVIDUALS IN JAPAN AND THE UNITED STATES K. Ueno, P.T. Sugihara, K.S. Bricknell, H.R. Attebery, V.L. Sutter and S.M. Finegold .	135
XIV.	ENTEROTOXIN OF CLOSTRIDIUM PERFRINGENS A.H.W. Hauschild	149
XV.	INCIDENCE OF INTESTINAL ANAEROBES IN BLOOD CULTURES A.C. Sonnenwirth	157
XVI.	IMMUNE RESPONSE TO ANAEROBIC INFECTIONSD. Danielsson, D.W. Lambe, Jr. andS. Persson	173

	Contents	xix
Chapter	PART III	Page
ANAER	OBIC INFECTIONS—GENERAL CONSIDERATIO Moderators: H.D. Isenberg and L.B. Guze	NS
XVII.	Some Infections Due to Anaerobic Spore- forming Bacilli H.T. Willis	195
XVIII.	Infections Due to Anaerobic Nonsporeforming Bacilli	
XIX.	J.S. Goodman The Agents of Human Actinomycosis	219
XX.	L.K. Georg Infections Due to Anaerobic Cocci	237
XXI.	A.N. Weinberg Aspects of the Pathogenicity and Ecology of the Indigenous Oral Flora of Man	257
XXII.	R.J. Gibbons Treatment of Botulism and Wound Botulism	267
XXIII.	M. Cherington Endotoxins of Anaerobic Gram-Negative Micro- organisms	287
	T. Hofstad	295

PART IV

ANAEROBIC INFECTIONS—DISEASE SYNDROMES Moderators: E. Hook and L. Sabath

XXIV.	. Infections of the Central Nervous System		
	M.N. Swartz and A.W. Karchmer	309	
XXV.	Anaerobic Pleuropulmonary Disease: Clinical		
	Observations and Bacteriology in 100 Cases		
	J.G. Bartlett, V.L. Sutter and		
	S.M. Finegold	327	
XXVI.	Infective Endocarditis Caused by Anaerobic		
	BACTERIA		
	J.M. Felner	345	

Anaerobic Diseases

Chapter	·	Page
XXVII.	A SURGEON'S VIEW OF THE IMPORTANCE OF AN-	
	AEROBIC BACTERIA IN MUSCULOSKELETAL INFECTIONS	
	H. Bernard	353
XXVIII.	Urinary Tract Infections Due to Anaerobic	
	BACTERIA	
	W.J. Martin and J.W. Segura	359
XXIX.	Septic Abortion and Related Infections of	
	Pregnancy	
	E.B. Rotheram	369
XXX.	Anaerobic Bacteria in Infections of the	
	Female Genital Tract	
	R.M. Swenson	379

PART V

DISEASE SYNDROMES (CONTINUED) AND IN VITRO ANTIBIOTIC SUSCEPTIBILITY TESTING Moderators: G. Jackson and W.M. Kirby

XXXI. LIVER ABSCESS: THE ETIOLOGIC ROLE OF
ANAEROBIC BACTERIA
W.A. Altemeier 387
XXXII. Anaerobic Microorganisms in Intraabdominal
Infections
S.L. Gorbach, H. Thadepalli and J. Norsen 399
XXXIII. Dental Infections
W.J. Loesche 409
XXXIV. Dermatologic Anaerobic Infections
(Including Acne)
S.M. Puhvel and R.M. Reisner
XXXV. Antibiotic Susceptibility Testing of
Anaerobic Bacteria
T.D. Wilkins 451
XXXVI. IN VITRO SUSCEPTIBILITY TESTING OF ANAEROBES:
STANDARDIZATION OF A SINGLE DISC TEST
V.L. Sutter, Y. Kwok and S.M. Finegold 457

XX

	Contents	x xi
Chapter		Page
XXXVII.	Factors Affecting Susceptibility Tests	
	and the Need for Standardized Procedures	
	C. Thornsberry	477
XXXVIII.	IN VITRO SUSCEPTIBILITY OF ANAEROBIC	
	BACTERIA ISOLATED FROM BLOOD CULTURES	
	J.A. Washington, II, W.J. Martin and	
	P.E. Hermans	487
XXXIX.	A DISCUSSION OF SUSCEPTIBILITY TESTING	
	J.C. Sherris	497
XL.	IN VITRO ANTIBIOTIC SUSCEPTIBILITY TESTING:	
	Open Discussion	505

PART VI

CLINICAL RESULTS OF TREATMENT AND SUMMARIES Moderators: L.B. Guze and D. Kaye

XLI.	TREATMENT OF CLOSTRIDAL INFECTIONS	
	W.H. Brummelkamp	521
XLII.	TREATMENT OF BACTEROIDACEAE BACTEREMIA:	
	Clinical Experience with 112 Patients	
	A.W. Chow and L.B. Guze	553
XLIII.	Serologic Screening for Actinomycosis	
	P.I. Lerner	571
XLIV.	Infections Due to Anaerobic Cocci	
	D.W. Lambe, Jr., D.H. Vroon and	
	C.W. Rietz	585
XLV.	Invited Discussion: Clinical Anaerobic	
	Infections	
	H. Beerens	601
	SUMMARY OF THE CONFERENCE	
	L.DS. Smith	605
	SUMMARY OF THE CONFERENCE	
	E. Hook	611
	AUTHOR INDEX	619
	SUBJECT INDEX	637

ANAEROBIC BACTERIA: Role In Disease

CHAPTER I

ANAEROBIC BACTERIA PERSPECTIVES

Albert Balows

T IS MY TASK to introduce the subject of this Conference, anaerobic bacteria, by placing it in proper perspective. This can best be done by paraphrasing a comment in a recent editorial on anaerobic infections: medicine and microbiology must synergize lest, once again, all the world become anaerobic (Medeiros, 1972).

Not too many years ago, we had no great problems in recognizing anaerobic diseases: botulism, tetanus and gas gangrene were distinct clinical entities, each caused by specific sporeforming clostridia. Today, the situation has taken a 180degree turn. Anaerobic bacteriology is literally in a renaissance period of development, and with it comes a new approach to the clinical relevance of infections caused by anaerobes. Improvements in technology during the past 10 years have permitted more definitive bacteriologic and clinical studies which continue to emphasize the importance of anaerobes in human and animal disease. These studies have dispelled certain misconceptions—so prominent in the literature—in relation to the disease potential of these anaerobes that are indigenous to man. When we recall that the microbiota of man is heavily favored for the anaerobes (by factors of 10:1 in the vagina, oral cavity, and skin to as much as 1,000 : 1 in the large intestine), it is no wonder that life-threatening diseases caused by one or more of the endogenous anaerobes are more common than those due to anaerobic bacteria of exogenous origin.

Technological achievements make it possible to cultivate virtually all anaerobes that may be present in a clinical specimen. This is accomplished by using improved methods of specimen collection, coupled with one or more anaerobic

Anaerobic Diseases

systems and improved isolation media. A wide variety of differential media and sophisticated end-product determinations facilitate the classification of these anaerobes. More recently, several laboratories have directed their efforts toward the development of *in vitro* antimicrobic susceptibility techniques to aid in the selection of appropriate therapy.

At the outset of this Conference, we should note that some indigenous anaerobes appear to be frequently associated with human disease, whereas others, although present in large numbers in the normal microflora, seldom, if ever, are involved in human infections (Table I-I). For example, all

Frequently encountered in significant infections	Seldom, if ever, encountered in significan human infections
Actinomyces	Acidaminococcus
Arachnia	Borrelia
Bacteroides	Butyrivibrio
Bifidobacterium	Lachnospira
Clostridium	Lactobacillus
Eubacterium	Leptotrichia
Fusobacterium	Ruminococcus
Peptococcus	Succinimonas
Peptostreptococcus	Succinivibrio
Propionibacterium	
Treponema	
Veillonella	

TABLE I-I GENERA OF ANAEROBIC BACTERIA

five subspecies of the *Bacteroides fragilis* group may be present in large numbers in normal gut flora. We rarely, if ever, isolate subspecies *ovatus* from clinical specimens associated with human infection, but the remaining four subspecies are isolated with almost regular frequency. To emphasize this point, let me show you a list (Table I-II) of anaerobic bacteria most frequently submitted to the CDC laboratories for identification (Dowell and Hawkins, 1972). These isolates are received from laboratories across the country, so this list is representative of those anaerobes most frequently isolated in the *average* hospital laboratory.

4

TABLE I-II

ANAEROBIC BACTERIA FROM HUMAN INFECTIONS MOST FREQUENTLY SUBMITTED TO THE CDC ANAEROBE LABORATORY: 1962–1972

1. Clostridia C. bifermentans C. butyricum C. cadaveris (C. capitovale)* C. innocuum C. limosum (Clostridium sp CDC group P-1) C. perfringens C. ramosum (Catenabacterium filamentosum, Bacteroides terebrans) C. septicum C. sordellii C. sporogenes C. subterminale C. tertium 2. Nonsporeforming gram-positive bacilli Actinomyces israelii Actinomyces odontolyticus Actinomyces naeslundii Actinomyces naestanat. Arachnia propionica (Actinomyces propionicus) Bifidobacterium eriksonii (Actinomyces eriksonii) Eubacterium alactolyticum (Ramibacterium species) Eubacterium lentum (Corynebacterium diphtheroides) Eubacterium limosum Propionibacterium acnes (Corynebacterium acnes) Propionibacterium granulosum (Corynebacterium granulosum) 3. Nonsporeforming, gram-negative bacilli Bacteroides fragilis ss. fragilis (B. fragilis) Bacteroides fragilis ss. thetaiotaomicron (B. variabilis) Bacteroides fragilis ss. vulgatus (B. incommunis) Bacteroides melaninogenicus ss. asaccharolyticus Bacteroides melaninogenicus ss. intermedius Fusobacterium mortiferum (Sphaerophorus ridiculosis) Fusobacterium necrophorum (Sphaerophorus necrophorus) Fusobacterium nucleatum (Fusobacterium fusiforme) Anaerobic cocci Peptococcus sp. CDC group 2 Peptostreptococcus sp. CDC group 1 Peptostreptococcus sp. CDC group 2 Peptostreptococcus sp. CDC group 3 Veillonella alcalescens Veillonella parvula

* Former name.

From the bacteriologic viewpoint, we have made considerable progress; the mystique of the anaerobic bacteria is not nearly so overwhelming as it was a dozen years ago. We also have developed a clearer understanding of the clinical importance of these anaerobes. Bacteremia caused by *Bacteroides fragilis* is an established clinical entity, with a consequence of which most clinicians are well aware. A striking association

Anaerobic Diseases

of *Clostridium septicum* with certain malignancies, such as leukemia and various types of carcinoma, has been established. *Propionibacterium acnes*, a well recognized member of the normal cutaneous flora and frequently discarded by the clinical laboratory as a "diphtheroid," has been definitely incriminated as an etiologic agent of subacute bacterial endocarditis and may also be involved in some cases of chronic meningitis and chronic actinomycotic-like illnesses.

This Conference stems from the desire to reappraise our observations and data so that we can better assess the role of anaerobic bacteria in disease and the directions future investigations should take.

REFERENCES

- Dowell, V.R., Jr., and Hawkins, T.M.: Laboratory Methods in Anaerobic Bacteriology. CDC Laboratory Manual. Atlanta, Center for Disease Control, HEW, PHS, 1972.
- Medeiros, A.E.: Once all the world was anaerobic. N Engl J Med, 287:1041, 1972.

6

PART I

NOMENCLATURE, TAXONOMY

AND

GENERAL METHODOLOGY

CHAPTER II

COLLECTION OF CLINICAL SPECIMENS AND PRIMARY ISOLATION OF ANAEROBIC BACTERIA

V.R. DOWELL, JR.

ABSTRACT: Techniques for collection of clinical specimens and primary isolation of anaerobic bacteria are described briefly. The aspects emphasized are (1) proper selection of specimens to avoid contamination with normal flora and consequent erroneous results; (2) collection of specimens under anaerobic conditions; (3) use of fresh or prereduced primary isolation media; and (4) selective isolation procedures.

Anaerobic bacteria associated with human infections are widely distributed in nature. Their habitats include soil, water, and the oral cavity, gastrointestinal tract, genitourinary tract, and skin of man and lower animals (Rosebury, 1962; Smith and Holdeman, 1968; Willis, 1969). Although there are a number of diseases involving anaerobic bacteria from exogenous sources (Table II-I), endogenous infections involving these microorganisms (Table II-II) are much more common. Factors commonly predisposing to endogenous anaerobic infections include surgery, malignancy, diabetes

TABLE II-I

DISEASES INVOLVING ANAEROBIC BACTERIA OF EXOGENOUS ORIGIN

Foodborne illnesses		
Botulism		
Clostridium perfringens gastroenteritis		
Wound Infections		
Tetanus		
Myonecrosis ("gas gangrene")		
Crepitant cellulitis		
Benign superficial infections		
Infection involving human or animal bite		
Botulism		
Septic abortion (contaminated instruments)		

TABLE II-II

ANAEROBIC INFECTIONS OF ENDOGENOUS ORIGIN

Central Nervous System:

Brain abscess, meningitis

Dental, ENT, Respiratory:

Peridontal infection, otitis media, pharyngitis, tonsillitis, sinusitis, pulmonary abscess, pneumonia, empyema, "actinomycosis" Intra-abdominal:

Appendicitis, diverticulitis, colitis, malabsorption disease; post-surgical infection including cellulitis, myonecrosis, and tetanus; abscess of any organ, peritonitis Genitourinary:

Endometritis, salpingitis, ovarian abscess, infection of Bartholin's gland, urethritis, nephritis, abscess of kidney

Other:

Bacteremia, subacute bacterial endocarditis, osteomyelitis, perirectal abscess, decubitus ulcer, etc.

mellitus, arteriosclerosis, alcoholism and antibiotic, immunosuppressant, corticosteroid or X-irradiation therapy (Bornstein *et al.*, 1964; Felner and Dowell, 1971).

As discussed in previous publications, proper selection and collection of specimens; culture of the material as soon as possible after collection; use of fresh, properly reduced media; and provision of adequate anaerobic conditions are some of the more important considerations in the isolation of anaerobic bacteria (Dowell and Hawkins, 1968; Dowell, 1970).

COLLECTION OF SPECIMENS

Proper selection and collection of specimens are extremely important for laboratory confirmation of anaerobic infections. Otherwise, culture results may be misleading or meaningless. Since various anaerobic bacteria are present in large numbers in the normal flora of the oral cavity and gastrointestinal tract and some inhabit the genitourinary tract and skin (Dowell, 1970; Finegold, 1970), specimens likely to be contaminated with these microorganisms should not be cultured. These include the following:

- 1. Throat or nasopharyngeal swabs.
- 2. Sputum or bronchoscopic specimens.
- 3. Feces or rectal swabs.
- 4. Voided or catheterized urine.

5. Vaginal or cervical swabs (not collected by visualization via a speculum).

6. Material from superficial wounds or abscesses not collected properly to exclude surface contaminants.

7. Material from abdominal wounds obviously contaminated with feces, e.g. open fistula. On the other hand, *all* body fluids and tissues from sites not contaminated with normal flora should be cultured for anaerobic bacteria (Sutter *et al.*, 1972). Examples of acceptable clinical specimens for laboratory diagnosis of anaerobic infections are listed in Table II-III.

Exposure of clinical specimens to oxygen is probably one of the major reasons some laboratories have little success in cultivation of anaerobes. The most suitable samples for isolation of anaerobic bacteria are aspirated materials and tissue biopsies; swab samples are much less satisfactory (Dowell and Hawkins, 1968). When a sample is collected with a needle and syringe, the syringe should be cleared of air and the fluid injected immediately into a sterile gassed out tube or vial (Holdeman and Moore, 1972; Sutter et al., 1972) to minimize exposure to oxygen. If it is not possible to culture tissue samples immediately, these should also be placed in an anaerobic environment until processed. A miniature anaerobic jar utilizing a 35-mm film container and steel-

TABLE II-III

EXAMPLES OF ACCEPTABLE CLINICAL SPECIMENS FOR LABORATORY DIAGNOSIS OF ANAEROBIC INFECTIONS

Cerebrospinal fluid, abscess material, tissue biopsy Dental, ENT:

Carefully aspirated material from abscesses and biopsied tissue

Pulmonary:

Transtracheal aspirate, tissue biopsy, direct lung aspirate, pleural fluid, "sulfur granules" from draining fistula

Intra-abdominal:

Aspirate from loculated abscess, ascitic fluid, tissue biopsy Genitourinary:

Urine (suprapubic aspirate), aspirate from loculated abscess, tissue biopsy from normally sterile site, cervical material collected by direct visualization

Other:

Blood, bone marrow, bile, aspirated "joint" fluid, muscle biopsy from suspected gas gangrene, biopsied tissue from any normally sterile site

CNS:

Anaerobic Diseases

wool immersed briefly in an acidified copper sulfate solution to absorb oxygen has been recommended by Attebury and Finegold for this purpose (Sutter *et al.*, 1972).

If it is absolutely necessary to obtain material with swabs, at least three swabs should be used to provide sufficient material for microscopic examination and culture. These should be processed immediately or placed in prereduced anaerobically sterilized Carey-Blair medium with a *head* of oxygen-free CO_2 as recommended by Sutter *et al.* (1972) or in *gassed out* tubes containing oxygen-free CO_2 (Holdeman and Moore, 1972; Sutter *et al.*, 1972). Anaerobic transport tubes and vials are now available commercially (Hyland Laboratories, Scott Laboratories). For maximum recovery of anaerobes in the same relative proportions as present in the infected tissue, all clinical specimens except blood samples should be held at room temperature for no longer than 2 hours before processing. The specimens should not be refrigerated, as chilling is detrimental to some anaerobes (Dowell, 1970).

Because of the complexity of the subject, anaerobic blood culture techniques will not be discussed in detail in this report. However, the following points regarding blood cultures should be kept in mind:

1. Before performing the venipuncture the skin must be carefully cleansed and disinfected to avoid contamination with normal skin inhabitants such as *Propionibacterium acnes* (Dowell, 1970; Sutter *et al.*, 1972).

2. Precautions must be taken to expel air from the syringe or collection device to prevent introduction of air into the blood culture system.

3. An adequate volume of blood should be cultured to allow detection of microorganisms in small numbers (at least 5 ml, preferably 10 ml) and the volume of culture medium should be at least 9 to 10 times that of the blood sample.

4. The medium must be nutritionally adequate for the anaerobic bacteria and as fresh as possible. Since some strains of *Bacteroides melaninogenicus* require vitamin K compounds for growth, addition of menadione (vitamin K_1) is recommended (Dowell and Hawkins, 1968; Holdeman and Moore, 1972; Sutter *et al.*, 1972).

5. Use of a medium containing polyanetholsulfonate (Liquoid) is advantageous but it should be kept in mind that some anaerobic cocci and *B. melaninogenicus* may be inhibited (Sutter *et al.*, 1972).

6. The medium must be properly reduced and as free of molecular oxygen as possible. Therefore, the medium should contain a reducing agent such as cysteine to lower the oxidation-reduction potential and air should be excluded during storage. This can be accomplished most expediently by preparation of blood culture bottles containing prereduced anaerobically sterilized (PRAS) medium (Holdeman and Moore, 1972; Sutter *et al.*, 1972).

7. PRAS blood culture media are now available commercially (Hyland Laboratories, Scott Laboratories).

Laboratory Confirmation of Botulism

The most effective means for confirming a diagnosis of botulism is to demonstrate the presence of botulinal toxin in the serum of the patient (CDC, 1970). It is also useful to test stomach contents, feces and suspect foods for toxin and to culture foods, feces, stomach contents and excised tissue (wound botulism) for *Clostridium botulinum*. Specimens to be tested for botulinal toxins and/or *C. botulinum* should be collected and handled as follows:

BLOOD. Collect sufficient blood, before the patient is treated with botulinal antitoxin, to provide 15 to 20 ml of serum. Refrigerate serum at 4°C until examined.

FOOD. Leave unopened containers sealed. Collect others in sterile, unbreakable containers. Refrigerate at 4°C until examined.

GASTRIC CONTENTS, FECES. Collect in sterile, unbreakable containers and refrigerate at 4°C until examined.

EXCISED TISSUE. Collect in sterile *gassed out* tubes if possible and hold under anaerobic conditions at ambient temperature until examined.

If it is necessary to ship the materials to a distant laboratory, place specimens in a leakproof container, wrap with a cushioning material, and pack with ice or refrigerant in a second

Anaerobic Diseases

leakproof, insulated shipping container and ship by the most rapid means available.

MICROSCOPIC EXAMINATION OF CLINICAL MATERIALS

Numerous investigators have emphasized the importance of microscopic examination of clinical specimens when anaerobic infections are suspected (Dowell and Hawkins, 1968; Dowell, 1970; Finegold, 1970; Holdeman and Moore, 1972; Smith and Holdeman, 1968; Sutter et al., 1972; Willis, 1969). Microscopic examinations can give immediate presumptive evidence of the presence of anaerobes and aid the physician in his choice of therapy. A Gram-stained direct smear should be examined from all types of clinical materials except blood. In addition to providing information on the cellular character of the specimen and the types of microorganisms present, the Gram-stained smear also aids the microbiologist in his choice of selective media for isolation of anaerobes from polymicrobic infections (Sutter et al., 1972). Microscopic examination of unstained clinical material by regular light, dark-field and phase contrast microscopy is also useful, particularly when spirochetes are suspected (Holdeman and Moore, 1972) and in the examination of "sulfur granules" from patients with suspected actinomycosis. Acidfast and Giemsa-stained direct smears can also provide useful information (Dowell, 1970).

PRIMARY ISOLATION

General Considerations

Media may become inhibitory for anaerobic bacteria if stored in the presence of oxygen (Aranki *et al.*, 1969; Dowell, 1970; Finegold, 1970; Hobbs *et al.*, 1971; Holdeman and Moore, 1972; Killgore *et al.*, 1973; Martin, 1971; Smith and Holdeman, 1968). For this reason, all media used for cultivation of anaerobes should be at optimum freshness; this is particularly true for plating media used for primary isolation. Also, overheating of media during or after preparation should be avoided (Dowell and Hawkins, 1968; Smith and Holdeman, 1968). Plating media for primary isolation should be prepared on the day of use or freshly prepared media can be stored under anaerobic conditions for a period no longer than two weeks. The media can be stored in an anaerobic jar (Smith and Holdeman, 1968), an anaerobic glove box (Aranki *et al.*, 1969; Killgore *et al.*, 1973), or in an airtight cabinet with a constant flow of carbon dioxide as described by Martin (1971). Liquid media not prepared by the PRAS technique (Holdeman and Moore, 1972) should be stored in tightly capped tubes in the dark at room temperature for no longer than two weeks.

Provided clinical specimens are collected properly and the materials are cultured with fresh, properly reduced media, successful cultivation of anaerobes can be obtained by use of the GasPak anaerobe jar (BBL) or an anaerobic jar with a gas replacement method (Collee *et al.*, 1972; Killgore *et al.*, 1973). The anaerobic glove box system (Aranki *et al.*, 1969; Killgore *et al.*, 1973), and the roll-streak tube system (Holdeman and Moore, 1972) using PRAS media also give excellent results. Since most clinical laboratories do not use an anaerobic glove box or roll-streak systems at present the following isolation procedures are designed for use with anaerobic jars.

Media

All clinical specimens except blood should be cultured by both direct plating and enrichment procedures, and selective media should be employed if warranted. At a minimum, the following should be inoculated with each specimen:

One tube of chopped meat-glucose medium enriched with hemin-menadione solution (Dowell and Hawkins, 1968); One tube of thioglycollate broth (BBL 135C or equivalent) enriched with 10 percent V/V sterile rabbit serum and hemin-menadione solution;

Two plates of blood agar containing menadione (Dowell and Hawkins, 1968)—incubate one plate anaerobically and the other in a candle jar or CO_2 incubator.