RADIOGRAPHY in the DIGITAL AGE FOURTH EDITION

PHYSICS EXPOSURE RADIATION BIOLOGY

Quinn B. Carroll, M.Ed., R.T.

RADIOGRAPHY IN THE DIGITAL AGE

Fourth Edition
RADIOGRAPHY IN THE DIGITAL AGE
Physics—Exposure— Radiation Biology
By Quinn B. Carroll, M.Ed., R.T.
CHARLES C THOMAS • PUBLISHER, LTD.
Springfield • Illinois • U.S.A.

Published and Distributed Throughout the World by

CHARLES C THOMAS • PUBLISHER, LTD. 2600 South First Street Springfield, Illinois 62704

This book is protected by copyright. No part of it may be reproduced in any manner without written permission from the publisher. All rights reserved.

© 2023 by CHARLES C THOMAS • PUBLISHER, LTD.

ISBN 978-0-398-09408-9 (Hard) ISBN 978-0-398-09409-6 (Ebook)

> First Edition, 2011 Second Edition, 2014 Third Edition, 2018 Fourth Edition, 2023

Library of Congress Catalog Numbers: 2023007112 (print) 2023007113 (ebook)

With THOMAS BOOKS careful attention is given to all details of manufacturing and design. It is the Publisher's desire to present books that are satisfactory as to their physical qualities and artistic possibilities and appropriate for their particular use. THOMAS BOOKS will be true to those laws of quality that assure a good name and good will.

Printed in the United States of America CM-S-2

Library of Congress Cataloging-in-Publication Data

Names: Carroll, Quinn B., author.
Title: Radiography in the digital age : physics, exposure, radiation
biology / by Quinn B Carroll.
Description: Fourth edition. Springfield, Illinois : Charles C Thomas,
Publisher, Ltd., 2023. Includes index.
Identifiers: LCCN 2023007112 (print) LCCN 2023007113 (ebook) ISBN
9780398094089 (hardback) ISBN 9780398094096 (ebook)
Subjects: MESH: Radiography Physics Radiologymethods Radiographic
Image Enhancement Technology, Radiologic Radiobiology
Classification: LCC RC78.7.D53 (print) LCC RC78.7.D53 (ebook) NLM WN
200 DDC 616.07/572dc23/eng/20230518
LC record available at https://lccn.loc.gov/2023007112
LC ebook record available at https://lccn.loc.gov/2023007113

REVIEWERS

Consulting Physicist

Charles E. Willis, PhD, DABR, FAAPM, FACR

University of Texas MD Anderson Cancer Center

Philip Heintz, PhD, DABR

University of New Mexico Health Sciences Center

Daniel J. Sandoval, PhD, DABR

University of New Mexico Health Sciences Center

Meg Rollins Petty, MSRS, RT(R)(N)

Radiography Program Director Southwestern Community College Sylva, North Carolina

Shane Mountain, AS, RT(R)

Adjunct Faculty NHTI Concord's Community College Concord, New Hampshire

Kelli Haynes, RT (R), FASRT, FAERS

Department Head, School of Allied Health Northwestern State University Natchitoches, Louisiana

Ajesh Singh Dip, BSc (Med Imaging)

Lecturer, School of Clinical Science Queensland University of Technology Brisbane, Australia

Donna Endicott, MEd, RT (R)

Director, Radiologic Technology Xavier University Cincinnati, Ohio

Robert L. Grossman, MS, RT (R)(CT)

Instructor, Radiography Middlesex Community College Middletown, Connecticut

C. William Mulkey, PhD, RT(R), FASRT

Dean, Dept. of Radiological Sciences (Rtd) Midlands Technical College West Columbia, North Carolina

Patrick Patterson, MS, RT, (R)(N) CNMT

Director, Radiography Program State College of Florida, manatee-Sarasota Bradenton, Florida

Dennis Bowman, AS, RT (R)

Clinical Instructor (Rtd) Community Hospital of Monterey Peninsula Marina, California

Miranda Poage, PhD

Associate Professor, Biology Midland College Midland, Texas

Dedication

To Jason and Stephanie, Melissa and Tim, Chad and Sarah, Tiffani and Nate, Brandon, and Tyson a most remarkable family, and to my cherished wife, Margaret, who made it possible for them all to come into my life

PREFACE

New to This Edition

The 4th edition was peer-reviewed by four colleagues who brought many valuable corrections and improvements to the textbook. Chapter 32 (now Chapter 31) on *Postprocessing Operations in Practice* was substantially rewritten with the goal of reducing dozens of differently-named features offered by the various manufacturers of x-ray equipment to a handful of generic terms for what are, after all, generic operations. Table 31-4 could be the most useful and student-friendly summary published to date of these postprocessing features; It takes six qualities of the displayed digital image (brightness, contrast, local contrast, noise, equalization, and bone/soft tissue impression), succinctly lists their primary controls (leveling, windowing, edge enhancement, smoothing, dynamic range compression, and VOI), and further connects these operations to default processing functions (rescaling, gradation LUTs, detail processing, dynamic range and histogram analysis).

True to the original spirit of this textbook to cover all pertinent material *comprehensively*, yet succinctly, in Chapter 31 a full explanation is given of how each image adjustment works as a generic concept, and then examples of the various proprietary terms used by each manufacturer are simply listed.

With the advent of digital imaging, radiographers now have *two completely different images* that we must understand. The first is the *projected image* carried by the remnant x-ray beam and impingent upon the image receptor. *This* is the image that all the conventional teachings about mAs, kVp, SID, SOD, OID and alignment apply to. The second is the *displayed digital image*, whose visibility qualities has been described by the American Association of Physicists in Medicine as completely decoupled from the original exposure conditions:

Unlike screen-film imaging, image display in digital radiography is independent of image acquisition. The final image brightness and contrast can be modified by digital processing of the acquired image data. Consequently, overexposed images will not necessarily be dark, and underexposed images may no appear light ... Brightness of the image is controlled not by the exposure to the detector, but by postprocessing applied to the image data. This may be a new and confusing concept for operators of digital radiography systems who are accustomed to screen-film imaging.

The postprocessing alluded to here includes *leveling* as a re-application of the rescaling operation, *windowing* as a re-application of gradation LUTs, and more advanced adjustments. For the displayed digital image, spatial resolution is now dependent on del and pixel size in addition to the original geometry of the x-ray exposure, and *display magnification* is independent of the original geometrical mag-

nification of the x-ray beam. As technologists, these are all equipment-related concepts that we are beholden to understand. Several tables and clarifying text have been added throughout the textbook to facilitate this understanding.

Substantial material has been added to the topic of *pulsed digital fluoroscopy* in Chapters 37 and 42. Updated information has also been added on the topic of *imaging informatics* in Chapter 35. With the help of reviewers, the entire textbook has been carefully correlated to the terms and topics listed in the most recent *Radiography Curriculum Guide* published by the *American Society of Radiologic Technologists*, and due consideration given to the *Radiography Content Specifications* published by the *American Registry of Radiologic Technologists* to ensure that both material and nomenclature is up-to-date. Students and educators alike are encouraged to keep in mind the highly useful *Glossary of Radiographic Terms* at the end of the book.

The chapter (28) on "Computer Basics" was deleted from this edition on the assumption that today's students have already covered all this material well enough in school. So we begin the digital section with "Creating the Digital Image" and go from there. Several crisp new illustrations and helpful tables have been added, along with refinements to the text designed to reduce what can be complicated topics to clear and concise explanations. While an effort has been made to reduce the size and weight of the book, its overall objective is to serve those programs with the philosophy that radiography education should be about understanding the how and why of our equipment rather than rote memorization. Those who prefer a more cursory treatment of digital radiography are referred to my textbook, *Digital Radiography in Practice* also published by Charles C. Thomas.

Scope and Philosophical Approach

The advent of digital radiographic imaging has radically changed many paradigms in radiography education. In order to bring the material we present completely upto-date, and in the final analysis to fully serve our students, much more is needed than simply adding two or three chapters on digital imaging to our textbooks:

First, the entire emphasis of the foundational physics our students learn must be adjusted in order to properly support the specific information on digital imaging that will follow. For example, a better basic understanding of waves, frequency, amplitude and interference is needed so that students can later grasp the concepts of spatial frequency processing to enhance image sharpness. A more thorough coverage of the basic construction and interpretation of graphs prepares the student for histograms and look-up tables. Lasers are also more thoroughly discussed here, since they have not only medical applications, but are such an integral part of computer technology and optical disc storage.

Second, there has been a paradigm shift in our use of image terminology. Perhaps the most disconcerting example is that we can no longer describe the direct effects of kVp upon image contrast; Rather, we can only describe the effects of kVp upon the subject contrast in the remnant beam signal reaching the image detector, a signal whose contrast will then be drastically manipulated by digital processing techniques. Considerable confusion continues to surround the subject of scatter radiation and its effects on the imaging chain. Great care is needed in choosing appropriate terminology, accurate descriptions and lucid illustrations for this material.

The elimination of much obsolete and extraneous material is long overdue. Our students need to know the electrical physics which directly bear upon the production of x-rays in the x-ray tube - they do not need to solve parallel and series circuit problems in their daily practice of radiography, nor do they need to be spending time solving problems on velocity. MRI is briefly overviewed when *radio* waves are discussed under basic physics, sonography is also discussed under the general heading of *waves*, and CT is described along with attenuation coefficients under digital imaging. But, none of these subspecialties has a whole chapter devoted to it.

It is time to bring our teaching of image display systems up to date by presenting the basics of LCD monitors and the basics of quality control for electronic images. These have been addressed in this work, as *part of ten* full chapters dealing specifically with digital and electronic imaging concepts. If you agree with this educational philosophy, you will find this textbook of great use.

Organization

The basic layout is as follows: In Part I, *The Physics of Radiography*, ten chapters are devoted to laying a firm foundation of math and basic physics skills. The descriptions of atomic structure and bonding go into a little more depth than previous textbooks have done. A focus is maintained on *energy* physics rather than mechanical physics. The nature of electromagnetic waves is more carefully and thoroughly discussed than most textbooks provide. Chapters on electricity are limited to only those concepts which bear directly upon the production of x-rays in the x-ray tube.

Part 2, *Production of the Radiographic Image*, presents a full discussion of the xray beam and its interactions within the patient, the production and characteristics of subject contrast within the remnant beam, and the proper use of radiographic technique. Image qualities are thoroughly covered. This is conventional information, but the terminology and descriptions used have been adapted with great care to the digital environment.

Part 3, *Digital Radiography*, includes nine chapters covering the physics of digital image capture, extensive information on digital processing techniques, and the practical application issues of both CR and DR. PACS and medical imaging informatics are included. There is a chapter on mobile radiography, fluoroscopy, and digital fluoroscopy, and an extensive chapter on quality control which includes digital image QC.

Finally, Part 4 consists of five chapters on *Radiation Biology and Protection*, including an unflinching look at current issues and practical applications including an unflinching look at current issues and practical applications.

Feedback

For a textbook to retain enduring value and usefulness, professional feedback is always needed. Colleagues who have adopted the text are invited to provide continuing input so that improvements might be made in the accuracy of the information as well as the presentation of the material. Personal contact information is available in the Instructor Resources (below) on disc or download.

This is intended to be a textbook written "by technologists for technologists," with proper focus and scope for the practice of radiography in this digital age. It is sincerely hoped that it will make a substantial contribution not only to the practice of radiography and to patient care, but to the satisfaction and fulfillment of radiographers in their career as well.

Instructional Resources

Instructor Resources for Radiography in the Digital Age, 4th Ed.: This disc includes over 1500 multiple-choice questions *with permission* for instructors' use. Answer keys for all chapter-end review questions in the textbook are included, along with keys to the multiple-choice question banks. Also included are 15 laboratory exercises demonstrating the applications of digital equipment. *Instructor Resources for Radiography in the Digital Age* is available on disc or download from Charles C Thomas, Publisher, Ltd. The website is *www.ccthomas.com*.

PowerPointTM Slides on Disc for Radiography in the Digital Age, 4th **Ed.:** PowerPointTM slides are available for classroom use. These are high-quality slides with large text, covering every chapter of the textbook, and including additional illustrations for each lecture. They cover as many as four courses in the typical radiography curriculum: Physics and Equipment, Principles of Radiographic Imaging, Digital Radiography, and Radiation Biology and Protection. Available from Charles C Thomas, Publisher Ltd. The website is *www.ccthomas.com*.

Student Workbook for Radiography in the Digital Age, 4th Ed.: This classroom supplement is exactly correlated with the *PowerPoint*TM slide series for in-classroom use. Although it can be used for homework assignments, it is designed to deliberately provoke student participation in classroom instruction while avoiding excessive note-taking that distracts the student from the lecture. All questions are in "fill-in-the-blank" format, focusing on key workds that correlate perfectly with the slides. Available from Charles C Thomas, Publisher, Ltd. The website is *www.ccthomas.com*.

ACKNOWLEDGMENTS

Many thanks to the reviewers for the 4th Edition, Meg Rollins Petty, Kelli Haynes, Robert L. Grossman, and Shane Mountain, who provided many improvements for content, organization and readability. Reviewers for previous editions have continued to be supportive and provide input. They include Ajesh Singh Dip, Patrick Patterson, Donna Endicott, and C. William Mulkey. Physicists Charles Willis, Phil Heintz and Dan Sandoval have all contributed to the accuracy of physics content, and Miranda Poage to the accuracy of biological content.

Special thanks to Georg Kornweibel and Dr. Ralph Koenker at Philips Healthcare, and to Gregg Cretellen at FujiMed for their sustained assistance. Thanks also to Lori Barski at Carestream Health, (previously Kodak). All were extremely helpful in obtaining images and a good deal of information related to digital imaging and processing. Dr. J. Anthony Seibert at the University of California Davis Medical Center was generous with his time and expertise, as well as providing energysubtraction images. His help was greatly appreciated.

Some material was adopted and adapted from contributing authors to my textbook, *Practical Radiographic Imaging*, (previously *Fuchs's Radiographic Exposure*, *Processing and Quality Control*). They include Robert DeAngelis, BSRT in Rutland, Vermont, Robert Parelli, MA, RT(R) in Cypress, California, and Euclid Seeram, RTR, MSc, in Burnaby, British Columbia, Canada. Their contributions are still greatly valued.

Many photographs and radiographs were made available by Kathy Ives, RT, Steven Hirt, RT, Jason Swopes, RT, Trevor Morris, RT, and Brady Widner, RT, all graduates whom I proudly claim, by Fyte Fire and Safety in Midland, Texas and Apogee Imaging Systems in Roseville, California, and made available in the public domain by the U.S. Army and U.S. Navy. Thanks, in particular to William S. Heathman, BSRT, my colleague in radiography education for many years, for his support and assistance.

Without the gracious assistance of all these individuals and companies, the completion of this work would have been impossible.

On a more personal note, I owe an eternal debt of gratitude to my sweet wife, Margaret for her acceptance, support and love throughout my life. I wish to express appreciation for the professional support and loyal friendship of Dr. Eileen Piwetz, which never waivered over 25 years, along with my love and admiration for all my colleagues in health sciences education, who, often against all odds, make miracles happen on the "front line" every day.

CONTENTS

Reviewers	v
Preface	vii
Acknowledgments	xi

PART I: THE PHYSICS OF RADIOGRAPHY

1.	Introduction to Radiographic Science	5
	The Scientific Approach A Brief History of X-Rays The Development of Modern Imaging Technology The Development of Digital Imaging Living with Radiation Summary Review Questions	5 9 11 12 14 15
2.	Basic Physics for Radiography	17
	The Base Quantities and Forces Unit Systems The Physics of Energy . Heat and States of Matter Summary . Review Questions	17 19 20 23 27 29
3.	Unit Conversions and Help with Math	31
	Mathematical TerminologyBasic OperationsConverting Fractions to DecimalsConverting Decimals and PercentagesExtent of RoundingOrder of OperationsAlgebraic OperationsRules for ExponentsConverting to Scientific NotationCalculating with Scientific NotationConverting Units with Dimensional AnalysisUsing Table 2-1	 31 32 32 32 32 32 33 34 34 35 36
	Areas and Volumes	37

	The Inverse Square Law	38
	Graphs	40
	Reading a Graph	42
	Understanding the X-Ray Beam Spectrum Curve	44
	Understanding the Digital Histogram	46
	Summary	48
	Review Questions: Practice Exercise 3-1	49
4.	The Atom	53
	Matter	53
	Physical Structure of Atoms	55
	Electron Configuration	59
	Chemical Bonding	60
	Covalent Bonding	60
	Ionic Bonding	61
	Ionization	62
	Structure of the Nucleus	64
	Radioactivity	66
	Summary	69
	Review Questions	70
5.	Electromagnetic Waves	71
	Waves	71
	The Electromagnetic Wave Formula	76
	The Plank Formula	77
	The Nature of Electromagnetic Waves	78
	The Electromagnetic Spectrum	80
	Medical Applications of Electromagnetic Waves	83
	Magnetic Resonance Imaging (MRI)	83
	Ultrasound	85
	Lasers	85
	Computed Radiography (CR) Readers	86
	Laser Film Digitizers	87
	Laser Film Printers	88
	Optical Disc Reading and Writing	88
	Characteristics of Visible Light vs. X-Rays	89
	Dual Nature of All Matter and Radiation	91
	Summary	95
	Review Questions	96
6.	Magnetism and Electrostatics	99
	Magnets	102
	Magnetic Fields	103
	Electrostatics	105
	The Five Laws of Electrostatics	105
	Electrification	106

	Using an Electroscope to Detect Radiation	108
	Summary	110
	Review Questions	111
7.	Electrodynamics	113
	Electrical Current	113
	Electrical Circuits	115
	Characteristics of Electricity	116
	Electrical Power	117
	Wave Forms of Electrical Current	119
	Electromagnetic Induction	122
	Summary	122
	Review Questions	127
	Review Questions	120
8.	X-Ray Machine Circuits and Generators	131
	A Basic X-Ray Machine Circuit	131
	Rectification	132
	The Filament Circuit	133
	Meters	135
	X-Ray Machine Generators	136
	Exposure Timers	139
	Automatic Exposure Controls (AEC)	139
	Summary	141
	Review Questions	142
9.	The X-Ray Tube	145
	X-Ray Production	145
	Components of the X-Ray Tube	147
	The Cathode	147
	The Anode	150
	The Glass Envelope	153
	X-Ray Tube Failure	154
	Extending X-Ray Tube Life	154
	Summary	155
	Review Questions	156
10.	X-Ray Production	157
	Interactions in the Anode	158
	Bremsstrahlung	158
	Characteristic Radiation	161
	Anode Heat	163
	Factors Affecting the X-Ray Beam Spectrum	164
	Target Material	164
	Milliampere-Seconds (mAs)	165
	Added Filtration	166
	Kilovoltage-Peak (kVp)	167

Generator Type	168
Summary	169
Review Questions	170

PART II: PRODUCTION OF THE RADIOGRAPHIC IMAGE

11.	Creation of the Radiographic Image	173
	The X-Ray Beam	173
	Radiographic Variables	174
	Technical Variables	174
	Geometrical Variables	174
	Patient Status	175
	Image Receptor Systems	175
	Image Processing	175
	Viewing Conditions	175
	X-Ray Interactions within the Patient	175
	The Photoelectric Effect	176
	The Compton Effect	177
	Coherent Scattering	180
	Characteristic Radiation	181
	Attenuation and Subject Contrast	182
	Capturing the Image	184
	Summary	184
	Review Questions	185
12.	Production of Subject Contrast	187
	General Attenuation and Subject Contrast	187
	Tissue Thickness	189
	Tissue Density	190
	Tissue Atomic Number	190
	Scattered X-Rays and Subject Contrast	191
	Predominance of Interactions and Subject Contrast	192
	X-Ray Beam Energy (kVp)	192
	Types of Tissue and Contrast Agents	194
	Relative Importance of kVp in Controlling Subject Contrast	195
	Summary	196
	Review Questions	197
13.	Visibility Qualities of the Image	199
	The Stages of Image Production	199
	The Components of Visibility	201
	Qualities of the Radiographic Image	201
	Brightness and Density	203
	Contrast and Gray Scale	205

	Noise	206
	Signal-to-Noise Ratio	207
	Artifacts	209
	Summary	
	Review Questions	213
14.	Geometrical Qualities of the Image	215
	Geometrical Integrity	215
	Spatial Resolution (Sharpness)	215
	Magnification (Size Distortion)	217
	Shape Distortion	217
	Measuring Unsharpness	217
	Relative Sharpness	220
	Radiographic Magnification	
	Magnification Formula	
	Radiographic Shape Distortion Overall Resolution	224 225
	Hierarchy of Image Qualities	
	Summary	226
	Review Questions	227
15.	Milliampere-Seconds (mAs)	229
	Control of Receptor Exposure	230
	Doing the Montal Math	0.01
	Doing the Mental Math	231
	Underexposure and Quantum Mottle	232
	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image	232 233
	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion	232 233 234
	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary	232 233 234 234
	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion	232 233 234
16.	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary Review Questions	232 233 234 234 235
16.	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary Review Questions Kilovoltage-Peak (kVp)	 232 233 234 234 235 237
16.	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary Review Questions Kilovoltage-Peak (kVp) Sufficient Penetration and Subject Contrast	 232 233 234 234 235 237 238
16.	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary Review Questions Kilovoltage-Peak (kVp) Sufficient Penetration and Subject Contrast The Fifteen Percent Rule	 232 233 234 234 235 237 238 240
16.	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary Review Questions Kilovoltage-Peak (kVp) Sufficient Penetration and Subject Contrast The Fifteen Percent Rule Doing the Mental Math	 232 233 234 234 235 237 238 240 241
16.	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary Review Questions Kilovoltage-Peak (k∨p) Sufficient Penetration and Subject Contrast The Fifteen Percent Rule Doing the Mental Math Optimum k∨p	 232 233 234 234 235 237 238 240 241 242
16.	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary Review Questions Kilovoltage-Peak (k∨p) Sufficient Penetration and Subject Contrast The Fifteen Percent Rule Doing the Mental Math Optimum kVp Patient Exposure and the 15 Percent Rule	 232 233 234 234 235 237 238 240 241 242 243
16.	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary Review Questions Kilovoltage-Peak (kVp) Sufficient Penetration and Subject Contrast The Fifteen Percent Rule Doing the Mental Math Optimum kVp Patient Exposure and the 15 Percent Rule Impact of Scatter Radiation on the Image	 232 233 234 234 235 237 238 240 241 242
16.	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary Review Questions Kilovoltage-Peak (kVp) Sufficient Penetration and Subject Contrast The Fifteen Percent Rule Doing the Mental Math Optimum kVp Patient Exposure and the 15 Percent Rule Impact of Scatter Radiation on the Image Conclusion	 232 233 234 234 235 237 238 240 241 242 243 243 243
16.	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary Review Questions Kilovoltage-Peak (kVp) Sufficient Penetration and Subject Contrast The Fifteen Percent Rule Doing the Mental Math Optimum kVp Patient Exposure and the 15 Percent Rule Impact of Scatter Radiation on the Image	232 233 234 234 235 237 238 240 241 242 243 243 243 246
16.	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary Review Questions Kilovoltage-Peak (k∨p) Sufficient Penetration and Subject Contrast The Fifteen Percent Rule Doing the Mental Math Optimum kVp Patient Exposure and the 15 Percent Rule Impact of Scatter Radiation on the Image Conclusion Other Characteristics of the Projected Image	232 233 234 235 237 238 240 241 242 243 243 246 246 246
	Underexposure and Quantum Mottle	232 233 234 234 235 237 238 240 241 242 243 243 243 246 246 247 247
	Underexposure and Quantum Mottle Subject Contrast and Other Characteristics of the Projected Image Exposure Time and Motion Summary Review Questions Kilovoltage-Peak (k∨p) Sufficient Penetration and Subject Contrast The Fifteen Percent Rule Doing the Mental Math Optimum kVp Patient Exposure and the 15 Percent Rule Impact of Scatter Radiation on the Image Conclusion Other Characteristics of the Projected Image Summary	232 233 234 235 237 238 240 241 242 243 243 243 246 246 247
	Underexposure and Quantum Mottle	232 233 234 234 235 237 238 240 241 242 243 243 243 246 246 247 247

	Other Image Qualities	251
	Battery-Operated Mobile Units	251
	Beam Filtration	252
	Protective Filters	252
	Half-Value Layer	253
	Effects on Exposure and Beam Spectrum	253
	Compensating Filtration	254
	Summary	255
	Review Questions	257
18.	Field Size Limitation	259
	Collimation Devices	259
	Positive Beam Limitation	260
	Over-Collimation	260
	Scatter Radiation and Subject Contrast in the Projected Image	261
	Effect on Receptor Exposure	263
	Other Characteristics of the Projected Image	263
	Calculating Field Size Coverage	263 264
	Summary	266
	Review Questions	267
	Review Questions	207
19.	Patient Condition, Pathology, and Contrast Agents	269
	General Patient Condition	269
	Thickness of the Part	269
	Thickness Ranges	270
	The Four Centimeter Rule	272
	Minimum Change Rule	272
	Body Habitus	273
	Sthenic	273
	Hyposthenic	273
	Asthenic	274
	Hypersthenic	274
	Large Muscular	274
	Influence of Age	275
	Anthropological Factors	275
	Molecular Composition of Tissues	275
	Contrast Agents	276
	Stage of Respiration and Patient Cooperation	278
	Pathology	279
	Additive Diseases	280
	Destructive Diseases	280
	Trauma	281
	Postmortem Radiography	281
	Soft-Tissue Technique	282
	Casts and Splints	282
	-	283 284
	Summary Review Questions	284 285
		205

20.	Scattered Radiation and Grids	287
	The Causes of Scatter	288
	High kVp Levels	288
	Large Field Sizes	289
	Large Soft-Tissue Part Thicknesses	289
	Conclusion	289
	Scatter Versus Blur	289
	Reducing Scatter with Grids	290
	Grid Ratio and Effectiveness Grid Frequency and Lead Content	292 293
	Effect on Subject Contrast	
	Use of Grids with Digital Equipment	293 294
	Conventional Indications for Grid Use	294
	Part Thickness	295
	Field Size	295
	Kilovoltage	295
	Measuring Grid Effectiveness	296
	Bucky Factor	296
	Selectivity	296
	Technique Compensation for Grids	297
	Other Characteristics of the Projected Image	298
	Grid Cut-Off	
	Grid Radius	298 300
	Alignment of the Beam and Grid	302
	Review Questions	302
		000
21.	The Anode Bevel and Focal Spot	305
	Line-Focus Principle	305
	Anode Heel Effect	307
	Focal Spot Size	311
	Effect Upon Spatial Resolution (Sharpness)	
	Penumbra	
	Magnification	314
	Other Characteristics of the Projected Image	314
	Conclusion	315
	Summary	315
	Review Questions	316
22.	Source-to-Image Receptor Distance (SID)	317
	Effect on Spatial Resolution	318
	Effect on Magnification	318
	Increased Field of View at Longer SID	319
	Shape Distortion	319
	Effect on Exposure	320
	Radiographic Formula for the Inverse Square Law	321

	Compensating Technique: The Square Law	323
	Rules of Thumb for SID Changes	324
	Other Aspects of the Projected Image	327
	Increased SID to Reduce Patient Dose	327
	Summary	328
	Review Questions	329
23.	OID and Distance Ratios	331
	Object-Image Receptor Distance	331
	Effect on Subject Contrast	331
	Effect on Receptor Exposure	334
	Effect on Spatial Resolution (Sharpness)	334
	Effect on Magnification	334
	Intentional Use of Long OID	336
	Shape Distortion	336
	Distance Ratios for Magnification and Sharpness	336
	Magnification: The SID/SOD Ratio	336
	Spatial Resolution: The SOD/OID Ratio	337
	Visibility Functions and Distance Ratios	339
	Summary	339
	Review Questions	341
24		2.42
24.	Alignment and Motion	343
	Alignment and Shape Distortion	343
	Alignment and Shape Distortion	343 344
	Off-Centering Versus Angling	344
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical Part	344 344
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long Axis	344 344 344
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of Isometry	344 344 344 345
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long Axis	 344 344 344 345 347
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam Divergence	344 344 344 345 347 347
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam DivergenceSID as a Contributing FactorMaintaining Exposure: Compensating Tube-to-Tabletop	344 344 345 347 347 348 349
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam DivergenceSID as a Contributing FactorMaintaining Exposure: Compensating Tube-to-TabletopDistance	344 344 345 347 347 347 348 349 350
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam DivergenceSID as a Contributing FactorMaintaining Exposure: Compensating Tube-to-TabletopDistanceOther Aspects of the Projected Image	344 344 345 347 347 347 348 349 350 350
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam DivergenceSID as a Contributing FactorMaintaining Exposure: Compensating Tube-to-TabletopDistanceOther Aspects of the Projected ImageGeometric Functions of Positioning	344 344 345 347 347 348 349 350 350 350
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam DivergenceSID as a Contributing FactorMaintaining Exposure: Compensating Tube-to-TabletopDistanceOther Aspects of the Projected ImageGeometric Functions of PositioningMotion	344 344 345 347 347 347 348 349 350 350 350 350
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam DivergenceSID as a Contributing FactorMaintaining Exposure: Compensating Tube-to-TabletopDistanceOther Aspects of the Projected ImageGeometric Functions of PositioningMotionEffect on Spatial Resolution	344 344 345 347 347 347 348 349 350 350 350 350 352 353
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam DivergenceSID as a Contributing FactorMaintaining Exposure: Compensating Tube-to-TabletopDistanceOther Aspects of the Projected ImageGeometric Functions of PositioningMotionEffect on Spatial ResolutionEffect on Subject Contrast	344 344 345 347 347 348 349 350 350 350 350 352 353 354
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam DivergenceSID as a Contributing FactorMaintaining Exposure: Compensating Tube-to-TabletopDistanceOther Aspects of the Projected ImageGeometric Functions of PositioningMotionEffect on Spatial ResolutionEffect on Subject ContrastOther Aspects of the Projected Image	344 344 345 347 347 347 348 349 350 350 350 350 350 352 353 354 354
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam DivergenceSID as a Contributing FactorMaintaining Exposure: Compensating Tube-to-TabletopDistanceOther Aspects of the Projected ImageGeometric Functions of PositioningMotionEffect on Spatial ResolutionEffect on Subject ContrastOther Aspects of the Projected Image	344 344 345 347 347 348 349 350 350 350 350 350 352 353 354 354 355
	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam DivergenceSID as a Contributing FactorMaintaining Exposure: Compensating Tube-to-TabletopDistanceOther Aspects of the Projected ImageGeometric Functions of PositioningMotionEffect on Spatial ResolutionEffect on Subject ContrastOther Aspects of the Projected Image	344 344 345 347 347 347 348 349 350 350 350 350 350 352 353 354 354
25.	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam DivergenceSID as a Contributing FactorMaintaining Exposure: Compensating Tube-to-TabletopDistanceOther Aspects of the Projected ImageGeometric Functions of PositioningMotionEffect on Spatial ResolutionEffect on Subject ContrastOther Aspects of the Projected Image	344 344 345 347 347 348 349 350 350 350 350 350 352 353 354 354 355
25.	Off-Centering Versus AnglingPosition, Shape, and Size of the Anatomical PartObjects with a Distinct Long AxisCeiszynski's Law of IsometryObjects without a Distinct Long AxisOff-Centering and Beam DivergenceRule for Beam DivergenceSID as a Contributing FactorMaintaining Exposure: Compensating Tube-to-TabletopDistanceOther Aspects of the Projected ImageGeometric Functions of PositioningMotionEffect on Spatial ResolutionEffect on Subject ContrastOther Aspects of the Projected ImageSummaryReview Questions	344 344 345 347 347 348 349 350 350 350 350 350 352 353 354 354 355 356

	Variables Affecting Subject Contrast of the Latent Image	
	Variables Affecting Image Noise in the Latent Image	361
	Variables Affecting Spatial Resolution (Sharpness)	
	of the Latent Image	362
	Variables Affecting Magnification of the Projected Image	362
	Variables Affecting Shape Distortion of the Projected Image	362
	Absorption Penumbra	362
	Contrast and Spatial Resolution	365
	Spatial Frequency	366
	Contrast Resolution: MTF	367
	Summary	369
	Review Questions	370
26.	Simplifying and Standardizing Technique	371
		272
	Variable kVp vs. Fixed kVp Approaches	
	Applying the Variable kVp Approach	
	The Proportional Anatomy Approach	374
	Using Technique Charts	378
	Developing a Chart from Scratch	381
	Summary	386
	Review Questions	387
27.	Using Automatic Exposure Controls (AEC)	389
	Minimum Response Time	390
	Back-up mAs or Time	390
	Preset Automatic Back-up mAs or Time	391
	The AEC Intensity (Density) Control	392
	Limitations of AEC	394
	Detector Cell Configuration	396
	Checklist of AEC Precautions	398
	AEC Technique Charts	399
	Programmed Exposure Controls	401
	Summary	401
	Review Questions	402

PART III: DIGITAL RADIOGRAPHY

28.	Creating the Digital Image	405
	The Nature of Digital Images	405
	Analog vs. Digital Data	409
	Digitizing an Analog Image	411
	Role of X-ray Attenuation in Forming the Digital Image	414
	Enhancement of Contrast Resolution	416
	Procedural Algorithms	418

	Window Level and Width	418 420
	Summary	
	Review Questions	424
29.	Digital Image Preprocessing and Processing (Rescaling)	425
	Introduction	425
	Preprocessing I: Field Uniformity	426
	Flat Field Uniformity Corrections	427
	Electronic Response and Gain Offsets	427
	Variable Scintillator Thickness	427
	Light Guide Variations in CR	428
	Preprocessing II: Noise Reduction for Del Drop-Out	428
	Preprocessing III: Image Analysis	429
	Segmentation and Exposure Field Recognition	429
	Constructing the Histogram	430
	Types of Histogram Analysis	434
	Histogram Analysis Processing Errors	436
	Maintaining the Spatial Matrix	438
	Rescaling (Processing) the Image	438
	Physicists' Terminology	443
	Summary	443
	Review Questions	444
30.	Digital Image Postprocessing	447
	Digital Processing Domains	447
	Postprocessing I: Gradation Processing with LUTs	450
	Initial Gradation Processing	450
	Parameters for Gradient Processing	455
	Data Clipping	456
	Equalization (Dynamic Range Compression)	457
	Postprocessing II: Detail Processing	459
	Applying Kernels in the Spatial Domain	460
	Using Kernels for Noise Reduction and Smoothing	462
	Understanding the Frequency Domain	462
	Processing in the Frequency Domain	463
	Multiscale Processing and Band-Pass Filtering	467
	Kernels as a Form of Band-Pass Filtering	469
	Parameters for Frequency Processing	469
	Postprocessing III: Preparation for Display	470
	Noise Reduction	470
	Contrast-Noise Ratio	471
	Additional Gradation LUT Processing	471
	Formatting for Display	471
	Digital Processing Suites	472
	Postprocessing IV: Operator Adjustments	

	Postprocessing V: Special Postprocessing	473
	Dual-Energy Subtraction	473
	Grid Line Suppression	477
	Conclusion	477
	Summary	477
	Review Questions	479
31.	Postprocessing Operations in Practice	481
	Speed Class and Exposure Indicators	481
	Logarithmic Scales	483
	Proportional Scales	485
	Inversely Proportional Scales	485
	Limitations for Exposure Indicators	486
	Acceptable Parameters for Exposure	486
	The Deviation Index (DI)	487
	Inappropriate Clinical Use of the Deviation Index (DI)	488
	Exposure Indicator Errors	489
	Using Alternative Gradation LUTs	489
	Operator Adjustments to the Image	490
	Brightness and Contrast	490
	Local Contrast: Smoothing and Enhancement	491
	Equalization	494
	Region of Interest (ROI)	496
	Miscellaneous Processing Features	496
	Black Masking, Cropping, and Markers	496
	Image Reversal (Black Bone)	497
	Resizing (Magnification)	498
	Image Stitching	498
	Quality Criteria for the Displayed Digital Radiographic Image	499
	Glossary of Definitions	501
	Summary	501
	Review Questions	501
	Review Questions	302
32.	Applying Radiographic Technique to Digital Imaging	503
	Minimizing Patient Exposure	504
	High kVp and Scatter Radiation	504
	High kVp and Mottle	506
	Recommendation for Reducing Patient Exposure	513
	Does kVp Still Control Image Contrast?	514
	Extreme Changes	514
	Exposure Latitude, Overexposure, and Public Exposure	515
	Sufficient Penetration and Signal-to-Noise Ratio	516
	Effects of kVp Changes on the Image	516
	Effects of Scatter Radiation on Digital Images	517
	Fog Pattern Clean-up by Frequency Processing	522
	Technique Myths	

	Proportional Anatomy and Manual Technique Rules	523
	Automatic Exposure Controls (AECs)	523
	Use of Grids with Digital Radiography	524
	Aliasing (Moire Effect)	524
	On Reducing the Use of Grids	525
	Mottle or Scatter: Which is More Accetable?	525
	Virtual Grid Software	526
	Brightness Correction by Region of Interest	529
	Alignment Issues	530
	Centering of Anatomy	530
	Aligning Multiple Fields	530
	Overcollimation	
	Bilateral Views	
	Image Retention in Phosphor Plates	
	Summary	
	Review Questions	534
33.	Capturing the Digital Image: DR and CR	537
	Comparing CR and DR for Clinical Use	537
	Direct-Capture Digital Radiography (DR)	538
	The Del	
	Direct Conversion Systems	
	•	559 541
	Indirect Conversion SystemsComputed Radiography (CR)	
	The CR Cassette and Phosphor Plate	542 542
	The CR Reader (Processor)	542 545
	Image Identification	
	Recent Developments in CR	
	Background and Scatter Radiation	
	Spatial Resolution of Digital Systems	
	Hardware Matrices	
	The Soft Matrix of a Light Image The Pixel Size Formula	
	Summary	553
	Digital Sampling and Aliasing	553
	Characteristics of the Image Acquisition System	555
	Efficiency of Image Receptors	556
	CR Phosphor Plates	556
	DR Detector Panels	557
	Detective Quantum Efficiency (DQE)	557
	Digital Artifacts	558
	Summary	558
	Review Questions	559
34.	Display Systems and Electronic Images	563
	Liquid Crystal Display (LCD) Monitors	563
	Advantages and Disadvantages of LCDs	568

	Stability of Self-Calibrating LCDs	604
	Repeat Analysis	604
	Summary	604
	Review Questions	606
27	Mahila Dadia manha Eksenaanan	
37.	Mobile Radiography, Fluoroscopy,	607
	and Digital Fluoroscopy	607
	Mobile Radiography	607
	Mobile Generators	607
	Geometrical Factors	608
	Distance Considerations	608
	Alignment and Positioning Considerations	608
	Other Considerations	609
	Development of Fluoroscopy	610
	The Image Intensifier Tube	612
	Input Phosphor and Photocathode	612
	Electrostatic Focusing Lens	612
	Accelerating Anode	614
	Output Phosphor	614
	Brightness Gain	614
	Conversion Factor	614
	Multifield Image Intensifiers and Magnification Modes	614
	Automatic Stabilization of Brightness	615
	Signal Sensing	616
	Types of ABS Circuits	616
	Image Intensifier Recording Devices: CCDs and CMOSs	617
	Fluoroscopic Technique	619
	Fluoroscopic Image Quality	620
	Scintillation	621
	Contrast	621
	Distortion	621
	Pincushion Distortion	621
	Veiling Glare	622
	Vignetting	
	Processing the Image from the Intensifier Tube	622
	Mobile Image Intensification (C-Arm)	622
	Minimizing Patient and Operator Exposure	624
	Fluoroscopic Exposure Time	624
	Pulsed Digital Flouroscopy (DF)	624
	Temporal Averaging	626
	Dynamic Flat Panel Detectors (DFPDs)	627
	Digital Subtraction Techniques	628
	Temporal Subtraction	628
	Energy Subtraction	629
	Roadmapping	630
	Summary	630
	Review Questions	631

38.	Radiation Perspectives	637
	Perceptions	637
	On the Radiographer's Job	637
	On Environmental Radiation	638
	Developing a Frame of Reference	640
	Sources of Radiation	642
	Natural Background Radiation	643
	Manmade Sources of Radiation	643
	Radioactivity	645
	Half-Life	647
	Conclusion	650
	Summary	650
	Review Questions	651
39.	Radiation Units and Measurement	653
	Radiation Units	654
	Radiation Exposure	654
	Air Kerma	654
	Exposure Area Product	655
	Surface Integral Exposure	655
	Absorbed Dose	655
	Dose Area Product	656
	Integral Dose	657
	Dose Equivalent	657
	Effective Dose	658
	Proper Use of Units	658
	Dose Equivalent Limits (DELs)	660
	The Cumulative Lifetime Limit	660
	The Prospective Limit	661 661
	The Retrospective Limit Current Limits	661
	Genetically Significant Dose (GSD)	662
	Radiation Detection Instruments	663
	Characteristics of Radiation Detection Devices	663
	Sensitivity	663
	Accuracy	665
	Resolving (Interrogation) Time	665
	Range	666
	Types of Radiation Detection Instruments	666
	Scintillation Detectors	666
	Optically Stimulated Luminescence (OSL) Dosimeters	667
	Thermoluminescent Dosimeters (TLDs)	668
	Film Badges	669

	Gas-Filled Detectors	670
	Pocket Dosimeters	670
	Ionization Chambers	671
	Proportional Counters	672
	Geiger-Mueller Tubes	672
	Personal Radiation Monitors	673
	Voltage-Dependence of Electronic Detection Instruments	674
	Summary	676
	Review Questions	678
40.	Radiation Biology: Cellular Effects	681
	Biological Review	682
	Tissues of the Human Body	682
	Human Cell Structure and Metabolism	683
	Transfer of Genetic Information	685
	Life Cycle of the Cell	686
	Mitosis	689
	Cell Life Cycle and Radiation Sensitivity	689
	Meiosis	691
	Cellular Radiation Effects	691
	Cell Sensitivity	691
	Law of Bergonie and Tribondeau	691
	Cellular Response to Radiation	692
	Theory of Cellular Damage	695
	Radiolysis of Water	697
	Damage to the Cell Membrane	699
	Types of Cell Death from Radiation Exposure	699
	Types of Damage to Chromosomes	699
	Main Chain Scission	700
	Rung Damage	701
	Mutations and Chromosome Aberrations	701
	Visible Chromosome Aberrations	702
	Linear Energy Transfer (LET)	703
	Relative Biological Effectiveness (RBE)	704
	Dose Rate	706
	Protraction of Dose	706
	Fractionation	706
	Oxygen Enhancement Ratio (OER)	707
	Other Biological Factors Affecting Radiosensitivity	707
	Summary of Factors Affecting Radiosensitivity	708
	Summary	708
	Review Questions	710
41.	Radiation Biology: Organism Effects	713
	Measuring Risk	713
	Stochastic Versus Deterministic Effects	714

	Early Effects of Radiation	715
	Lethal Doses	716
	Acute Radiation Syndrome	716
	Other Early Effects	720
	Late Effects of Radiation	721
	Teratogenic Effects of Radiation	721
	Period #1: 0–2 Weeks Gestation	721
	Period #2: 2–8 Weeks Gestation	721
	Period #3: 8–12 Weeks Gestation	722
	Period #4: After 3 Months Gestation	722
	Mutagenic Effects of Radiation	722
	Life-Span Shortening	723
	Cataracts of the Eye Lens	723
	Cancers	723
	Leukemia	724
	Mammograms and Breast Cancer	725
	Summary	726
	Review Questions	727
42.	Radiation Protection: Procedures and Policies	729
	Diagnostic Exposure Levels to Patients	730
	Gonadal Exposure	732
	Optimizing Radiographic Technique	732
	mAs and kVp	732
	Generators and Filtration	733
	Field Size Limitation	733
	Patient Status	733
	Grids and Image Receptors	733
	Increasing SID to Reduce Patient Dose	734
	e	734
		736
	Quality Control and HVL	736
	Digital Processing Speed Class	736
	Protecting the Patient	737
	Patient Shielding	737
	Policies for Patient Pregnancy	738
	Guidelines for Equipment	738
	Fluoroscope Technology	739
	Current Issues	741
	Protecting Personnel	742
	Personnel Monitoring	742
	The Cardinal Principles: Time, Distance and Shielding	743
	Personnel Shielding Requirements	745
	Equipment Shielding Requirements	747
	Personnel Protection Policies	748
	Policies for Technologist Pregnancy	749
	Guidelines for Equipment	749

Structural Barrier Shielding	750
Factors for Adequacy of Barriers	752
Types of Radiation Areas	753
Posted Warnings	753
Advisory and Regulatory Agencies	754
A Final Word	755
Summary	755
Review Questions	757
Appendix: Answers to Chapter Exercises	759
Glossary of Radiographic Terms	763
References	777
Index	779

RADIOGRAPHY IN THE DIGITAL AGE

Chapter 1

INTRODUCTION TO RADIOGRAPHIC SCIENCE

Objectives:

Upon completion of this chapter, you should be able to:

- 1. List the foundational principles of the scientific method and how they relate to the standard of practice for radiographers.
- 2. Describe landmark events in the development of medical radiography, with particular focus on those that brought about reductions in patient exposure.
- 3. Overview landmark events in the development of modern digital radiographic imaging.
- 4. Present a scientifically balanced perspective on the hazards of radiation in our environment and workplace.
- 5. Understand and appreciate the ALARA philosophy in modern radiographic imaging.

THE SCIENTIFIC APPROACH

Radiography is a branch of the modern *science* of medicine. Science is objective, observable, demonstrable knowledge. Try to imagine your doctor engaging in practices that were not grounded in scientific knowledge! What is it that sets science apart from art, philosophy, religion and other human endeavors? There are actually several foundational principles to scientific method. It is worthwhile to give a brief overview of them. They include:

- *Parsimony:* The attempt to simplify concepts and formulas, to economize explanations; the philosophy that simple explanations are more likely to be true than elaborate, complex ones.
- *Reproducibility:* The requirement that proofs (experiments) can be duplicated by different people at different times and in different locations with precisely the same results.
- *Falsifiability:* The requirement that any theory or hypothesis can logically and logistically be proven *false*. Anything that cannot be proven

false is not science, but belongs in another realm of human experience.

- *Observation:* The requirement that experiments and their results can be directly observed with the human senses.
- *Measurability:* The requirement that results can be quantified mathematically and measured.

As a fun practice exercise, consider the following three statements. Which one is scientific?

- 1. The moon is made of green cheese.
- 2. Intelligent life likely exists elsewhere in the universe.
- 3. Albert Einstein was the greatest physicist in the twentieth century.

The most scientific statement is No. 1. Even though it may not be a true statement, it is nonetheless a statement that can be (and has been) proven false with modern travel technology, it is simple, and experiments proving that moon rocks do not consist of green cheese can be reproduced by anyone, anywhere on earth with the same, observable, measurable results. Statement No. 2 may be true or false, but *cannot be proven false*, because to do so would require us to explore every planet in the entire universe, documenting that we have looked in every crevice and under every rock. It may be classified as a philosophical statement, but not as a scientific one. Statement No. 3 is, of course, a simple matter of personal opinion that depends upon how one defines the word "greatest." It is a historical statement that defies standardized measurement or observation.

Perhaps the strongest aspect of the scientific method is that when it is used properly, it is *selfcorrecting*. That is, when a theory is found to be wrong, that field of science is expected to be capable of transcending all politics, prejudice, tradition and financial gain in order to establish the new truth that will replace it. Sometimes this process is painful to the scientific community, and it has been known to take years to complete. But, at least it presupposes a collective willingness to accept the *possibility* that a previous position may have been wrong, something one rarely sees in nonscientific endeavors.

This principle of *self-correction* is nicely illustrated in the story of Henri Becquerel and the discovery of natural radioactivity, related in the next section. Also demonstrated in both his story and that of Wilhelm Roentgen, the discoverer of x-rays, is the fact that many scientific truths are discovered by accident. Nonetheless, it is *because* scientific method is being followed, not in spite of it, that they have occurred, and *through* scientific method that they come to be fully understood.

How does this scientific approach apply to radiography, specifically? Even though some aspects of radiography, such as positioning, are sometimes thought of as an art, the end result is an image that contains a quantifiable amount of diagnostically useful details, a measurable amount of information. Image qualities such as contrast, brightness, noise, sharpness and distortion can all be mathematically measured. Even the usefulness of different approaches to positioning are subject to measurement through repeat rate analysis. In choosing good radiographic practices, rather than relying on the subjective assertion from a cohort that, "It works for me," important matters can be objectively resolved by simply monitoring the repeats taken by those using the method compared to those using another method. By using good sampling (several radiographers using one method and several using another over a period of weeks), reliable conclusions can be drawn.

The standard of practice for all radiographers is to use good common sense, sound judgment, logical consistency and objective knowledge in providing the best possible care for their patients.

A BRIEF HISTORY OF X-RAYS

It is fascinating to note that manmade radiation was invented before natural radioactivity was discovered. If this seems backward, it is partly because x-rays were discovered by accident. In the late 1800s, Wilhelm Conrad Roentgen (Fig. 1-1) was conducting experiments in his laboratory at Wurzburg University in Germany. It had been discovered that a beam of electricity (glowing a beautiful blue in a darkened room) could be caused to stream across a glass tube. With strong enough voltage, the electricity could be caused to "jump" from a negatively-charged cathode wire across the gap toward a positively-charged anode plate, although most of it actually struck the glass behind. Since they were emitted from the cathode, these streams of electricity were dubbed cathode rays.

Several researchers were studying the characteristics of cathode rays. These glass tubes, known as Crookes tubes, came in many configurations. Figure 1-2 shows several that Roentgen actually used in his experiments. If most of the air was vacuumed out of the tube, the cathode rays became invisible. (It was later understood that they were in fact the electrons from the current in the cathode, far too small for the human eye to see, and that the blue glow was the effect from the ionization of the air around them.)

Other researchers had noticed that the glass at the anode end of the tube would fluoresce with a greenish glow when the cathode rays were flowing. They began experimenting with placing fluorescent materials in the path of the beam. They learned how to deflect the beam at right angles with a plate so it could exit the tube through a window of thin aluminum. In this way, cards or plates coated with different materials could simply be placed alongside the tube, in the path of the electron beam, to see how they fluoresced. Researchers learned to surround the tube with black cardboard so as to not confuse any light that might be generated within the tube with the fluorescence of the material outside the tube.

This was the type of experiment Roentgen was engaged with on November 8, 1895, when he noticed that a piece of paper laying on a bench nearby was glowing while the tube was activated in its black cardboard box. This paper was coated with barium platinocyanide, but it was not in the direct path of the cathode rays (electron beam).

Roentgen quickly realized that there must be some other type of radiation being emitted from the tube, other than the electron beam. He dubbed this radiation as "x" indicating the unknown. This radiation seemed to be emitted in all directions from the tube and was able to affect objects such as the plate at some distance. Placing various objects between the tube and the plate, he saw that they cast partial shadows on the glowing screen, while lead cast a solid shadow, stopping the mysterious rays altogether. He deduced that they traveled in straight lines and were able to penetrate less dense materials. During the following days, Roentgen conducted brilliant experiments delineating the characteristics of the x-rays.

Early in his experiments, he was astonished to see the image of the bones in his own hands on the Figure 1-1

Wilhelm Conrad Roentgen, discoverer of x-rays.

screen, while the flesh was penetrated through by the x-rays. The field of radiography was born when he placed his wife's hand in front of the screen and allowed the screen's fluorescent light to expose a photographic film for about four minutes (Fig. 1-3). Along with three other radiographs, this image was

Photograph of Crookes tubes employed by Roentgen in his experiments on cathode rays, which led to the discovery of x-rays. (From Quinn B. Carroll, *Practical Radiographic Imaging*, 8th ed. Springfield, IL: Charles C Thomas, Publisher, Ltd., 2007. Reprinted by permission.)

Figure 1-3

The first radiograph, showing the hand of Marie Roentgen with her wedding band, took over 4 minutes to expose.

published two months later in his paper, "On a New Kind of Rays," introducing the process of radiography to the world. With uncommon modesty, Roentgen refused to patent his radiographic process for commercial gain, showing great character to match his tremendous scientific acumen.

However, the discovery was truly accidental, as many scientific discoveries have been, taking an unexpected turn even while scientific method is rigorously followed. It was accidental because Roentgen was investigating the effects of the *cathode rays* or electron beam upon fluorescent materials, and was not expecting to find an object fluorescing outside of that beam of electrons.

It was in the following year, 1896, that Antoine Henri Becquerel, a French physicist, discovered natural radioactivity. Inspired by Roentgen, he hypothesized that crystals which phosphoresce ("glow in the dark") after absorbing light might also emit x-rays at the same time. He thought he had proven his theory when a phosphorescing crystal exposed a photographic plate wrapped in black paper. He wanted to repeat the experiment with a crystal known to phosphoresce for only 1/100th second, but was frustrated when cloudy weather prevented him from letting the crystal absorb some sunlight to begin. He placed the wrapped-up photographic plate and the crystal in a dark drawer. Later, on a pure whim, he developed the old plate. To his great surprise, it was darkened with exposure. He realized that "x-rays" must have been continuously emitted by the stone while it was in the drawer, rather than being emitted only along with phosphorescent light. Thus, another happy accident led to more accurate knowledge.

As the process of self-correcting scientific investigation continued in the following years, it was found that Becquerel's natural radiation consisted not strictly of x-rays, but of three distinct types of radiation. These were named alpha, beta and gamma rays. Using magnets and electrodes to deflect their paths, physicists were able to prove that alpha rays consisted of extremely heavy particles with positive electric charge, and beta rays consisted of very light particles with negative charge (electrons). Gamma rays were, in their nature, essentially the "x-rays" that Becquerel was looking for, but they had far higher energy than those produced by Roentgen's x-ray machines. These high energies gave them different abilities than x-rays, and made them unsuitable for producing radiographs, warranting their own distinct name, gamma rays.

Because of their brilliant investigative work, both Roentgen and Becquerel received Nobel Prizes. Our understanding of the atom developed hand-in-hand with our understanding of radiation. Ernest Rutherford, a New Zealand physicist, found that the alpha particle was identical to the nucleus of a helium atom. He proved the existence of the proton and predicted the neutron. Einstein discovered the photoelectric effect and much of his work built upon Roentgen, Becquerel, Rutherford and others. Thus, Wilhelm Roentgen "began a revolution in modern physics that was to include the quantum theory, radioactivity, relativity, and the new Bohr atom."¹ Figure 1-4 shows one of the first x-ray machines, installed at Massachusetts General Hospital in 1896.

¹ Encyclopedia Americana, Vol. 24, p. 68, 1970.

displayed image, the *only* quality that has typically *not* been altered by digital processing is shape distortion, which is primarily determined by positioning. Brightness, contrast, noise, spatial resolution and magnification have all been "tampered with" upon final display. What role, then, *does* the original radiographic technique play in determining final image quality?

The answer is that technique plays one, and only one, very critical role, and that is to *ensure that adequate signal reaches the detector system such that computer algorithms can be successful in making corrections and refinements to the image.* In more familiar terms, the one objective for setting radiographic technique on a digital unit is to get plenty of exposure to the image receptor without unnecessary exposure to the patient. This can be directly measured by the signal-to-noise ratio (SNR) at the detector.

The mAs setting and the SID combine to determine the *quantity* or intensity of radiation incident upon the patient, but since kVp controls the percentage penetration of that radiation *through* the patient, it also has a profound effect on the final intensity of the *remnant beam reaching the detector* behind the patient. To achieve adequate exposure to the image receptor and a good SNR, mAs *and* kVp in relation to each other (along with distances, filtration and generator type) must all be taken into consideration.

We will find in this chapter that all of the physics and technique concepts related to this goal (of achieving sufficient exposure at the detector) remain critical to the practice of radiography, and have not changed. For example, the concept that *no amount of mAs can compensate for insufficient kVp* still holds true. On the other hand, particularly when discussing the qualities of the final displayed image, we find that many old concepts must be completely discarded in order to avoid confusion. This chapter will attempt to sort out which concepts belong to the "still true" group and which to the "discard completely" group.

MINIMIZING PATIENT EXPOSURE

Most early CR systems were installed and operated

at a speed class of 200. This was only one-half the speed of the "regular" rare earth screens (400) that were popular over the last quarter of the twenthieth century. In making the change from rare earth screen systems to CR, many radiology departments doubled the mAs values used for most Bucky procedures, with some adjustments being more than this. This resulted in an undesirable doubling of x-ray exposure to patients undergoing pelvic, abdominal and head procedures, just where the most radiosensitive organs are located.

As described in Chapter 31, operation of a CR or DR system at the 400-speed class assumes an average exposure reaching the imaging plate of 5 μ Gy. It is possible for this level of exposure to be insufficient in some cases, based on the *assumption* of using previously popular kVp levels. But, by increasing *kVp* rather than mAs, penetration of the x-ray beam through to the imaging plate *does* result in sufficient exposure to the receptor elements, and allows operation at the 400-speed class.

High kVp and Scatter Radiation

Figures 32-1 and 32-2 use conventional radiographs to demonstrate how the effects of higher kVp levels upon the production of scatter radiation have traditionally been over-emphasized. The primary causes of scatter radiation are *patient size* and *collimation*, both of which bear upon the volume of exposed tissue. The effects of kilovoltage, while important to understand, are secondary when compared to these issues of tissue volume. Figure 33-1 shows a pair of AP elbow exposures taken at 65 kVp and 90 kVp for comparison. While desirable penetration and gray scale are achieved in radiograph **B**, no significant fogging is visible even when 25 more kVp than usual is used. This is because the anatomy has too small a volume of tissue to generate much scatter radiation at *any* kVp. Figure 32-2 demonstrates two abdomen radiographs of the same patient taken at 80 kVp and 92 kVp for comparison. Both were taken using the Bucky grid to attenuate scatter radiation. Again, while Radiograph B shows increased gray scale and penetration as expected, it is not visibly fogged—this result in spite of the fact that the abdomen is the portion of the body

¹ Shepard et al.: Exposure Indicator for DR: TG116 (Executive Summary) in Medical Physics, Vol. 36 No. 7, July 2009.