for RADIOGRAPHY in the DIGITALAGE

Quinn B. Carroll, M.ED., R.T.

STUDENT WORKBOOK

for

RADIOGRAPHY IN THE DIGITAL AGE

Fourth Edition

Student Workbook for RADIOGRAPHY IN THE DIGITAL AGE

By QUINN B. CARROLL, M.Ed., R.T.

CHARLES C THOMAS • PUBLISHER, LTD. Springfield • Illinois • U.S.A. Published and Distributed Throughout the World by

CHARLES C THOMAS • PUBLISHER, LTD. 2600 South First Street Springfield, Illinois 62704

This book is protected by copyright. No part of it may be reproduced in any manner without written permission from the publisher. All rights reserved.

© 2023 by CHARLES C THOMAS • PUBLISHER, LTD.

ISBN 978-0-398-09440-9 (plastic comb/paper) ISBN 978-0-398-09441-6 (ebook)

With THOMAS BOOKS careful attention is given to all details of manufacturing and design. It is the Publisher's desire to present books that are satisfactory as to their physical qualities and artistic possibilities and appropriate for their particular use. THOMAS BOOKS will be true to those laws of quality that assure a good name and good will.

> Printed in the United States of America MX-C-1

INTRODUCTION

How to Use this Student Workbook

This **Student Workbook** *for* **Radiography in the Digital Age** is designed for use in the following typical radiography courses:

- 1. Physics of Radiography
 - A. Radiation Production and Characteristics
 - B. Imaging Equipment
- 2. Principles of Imaging
- 3. Digital Image Acquisition and Display
- 4. Radiation Biology and Protection

The **Workbook** is entirely organized in a "fill-in-the-blank" format. The wording of each question closely matches both the textbook and the lecture slide series for each course. This format is designed for *short-term* reinforcement of the student's retention of lecture and reading material by focusing on key words. The **Workbook** should therefore be used on a *daily basis*, not as a self-test or review after whole units have been covered. The following are specific recommendations on how the student can most fully benefit from the Workbook and other ancillaries:

1. IN-CLASS USE:

This is the most recommended method, for use with the Lecture Slides for Radiography in the Digital Age. The sequence and wording of questions closely matches the slides. The questions have been kept short, with most blanks for filling in only with *key words* from the slide series. This is an effective "note-taking" tool that strikes a perfect balance between allowing the student to concentrate on the lecture by doing minimal writing, and still provoking the student to *participate* in classroom learning.

Instructors may elect to require this type of classroom participation and award points for completing each unit.

Some additional space at the bottom of each page is provided for any other notes the student might wish to take during lectures.

2. HOMEWORK USE:

If the **Workbook** is used as a reinforcement tool for *homework*, it is strongly recommended that the student answer the corresponding questions after reading *each major section* of a chapter. To facilitate this, the major unit subheadings are included in the **Workbook**. Do not wait until completing the entire chapter, or you may have trouble recalling the **key words** that are elicited by each question.

3. UNIT REVIEW AND SELF-TESTING:

For the purposes of review, self-testing or preparation immediately prior to a test, **Chapter Review Questions** are available at the end of each chapter in the textbook. Answer keys to these questions may be made available from your instructor. These are better suited for unit review than the workbook material.

vi

CONTENTS

			Page
Introduction: How to Use	This Student	t Workbook	v

Chapter

1.	INTRODUCTION TO RADIOGRAPHIC SCIENCE	3
	BASIC PHYSICS FOR RADIOGRAPHY	
3.	UNIT CONVERSIONS AND HELP WITH MATH	11
	THE ATOM	
5.	ELECTROMAGNETIC WAVES	26
6.	MAGNETISM AND ELECTROSTATICS	39
	ELECTRODYNAMICS	
8.	X-RAY MACHINE CIRCUITS AND GENERATORS	55
	THE X-RAY TUBE	
10.	X-RAY PRODUCTION	67
	CREATION OF THE RADIOGRAPHIC IMAGE	
	PRODUCTION OF SUBJECT CONTRAST	
	VISIBILITY QUALITIES OF THE IMAGE	
14.	GEOMETRIC QUALITIES OF THE RADIOGRAPHIC IMAGE	86
	MILLIAMPERE-SECONDS (mAs)	
16.	KILOVOLTAGE-PEAK (kVp)	96
17.	GENERATORS AND FILTRATION	100
18.	FIELD SIZE LIMITATION	104
19.	PATIENT CONDITION, PATHOLOGY, AND CONTRAST AGENTS	108
	SCATTERED RADIATION AND GRIDS	
21.	THE ANODE BEVEL AND FOCAL SPOT	120
22.	SOURCE-TO-IMAGE RECEPTOR DISTANCE (SID)	124
	OID AND DISTANCE RATIOS	
24.	ALIGNMENT AND MOTION	133
25.	ANALYZING THE LATENT RADIOGRAPHIC IMAGE	137
26.	SIMPLIFYING AND STANDARDIZING TECHNIQUE	145
27.	USING AUTOMATIC EXPOSURE CONTROLS (AEC)	150

Student Workbook for Radiography in the Digital Age

28.	CREATING THE DIGITAL IMAGE	156
29.	DIGITAL IMAGE PREPROCESSING AND PROCESSING (RESCALING)	164
30.	DIGITAL IMAGE POSTPROCESSING	171
31.	POSTPROCESSING OPERATIONS IN PRACTICE	185
32.	APPLYING RADIOGRAPHIC TECHNIQUE TO DIGITAL IMAGING	198
33.	CAPTURING THE DIGITAL IMAGE: DR AND CR	210
34.	DISPLAY SYSTEMS AND ELECTRONIC IMAGES	227
35.	PACS, MIMPS, AND IMAGING INFORMATICS	236
36.	QUALITY CONTROL	247
37.	MOBILE RADIOGRAPHY, FLUOROSCOPY, AND DIGITAL FLUOROSCOPY	255
38.	RADIATION PERSPECTIVES	274
39.	RADIATION UNITS AND MEASUREMENT	282
40.	RADIATION BIOLOGY: CELLULAR EFFECTS	298
41.	RADIATION BIOLOGY: ORGANISM EFFECTS	311
42.	RADIATION PROTECTION: PROCEDURES AND POLICIES	323

viii

STUDENT WORKBOOK

for

RADIOGRAPHY IN THE DIGITAL AGE

Chapter 1

INTRODUCTION TO RADIOGRAPHIC SCIENCE

The Scientific Approach

1. Fill in the terms for the following definitions:

:	The attempt to simplify concepts and formulas, to economize explanations; the philosophy that simple explanations are more likely to be true than elaborate, complex ones.
:	The requirement that proofs (experiments) can be duplicated by different people at different times and in different locations with precisely the same results.
:	The requirement that any theory or hypothesis can logically and logistically be proven <i>false</i> . Anything that cannot be proven false is not science, but belongs in another realm of human experience.
:	The requirement that experiments and their results can be directly observed with the human senses.
::	The requirement that results can be quantified mathemati- cally and measured.

Additional NOTES:

- Radiography is primarily a science because the radiographic image contains

 amount of diagnostically useful details, a
 amount of information.
- 4. The standard of practice for all radiographers is to use good _______, sound ______, logical ______, logical ______ and objective ______ in providing the best possible care for their patients.

A Brief History of X-Rays

- 6. Roentgen accidentally discovered x-rays on November _____, _____ in _____, Germany.

The Development of Modern Imaging Technology

- 8. The first fluoroscope was invented by ______.
- Early fluoroscopes required high doses of radiation to patients, and were not substantially improved upon until 1948 when the ______ was developed.
- 10. A dentist, William Rollins, developed both the first ______ and the first ______.

Additional NOTES:

4

- 11. The high-efficiency hot-filament x-ray tube was invented by ______.
- 12. American professor ______ sandwiched x-ray film between fluorescent intensifying screens (developed by Thomas Edison) to create the first x-ray cassette.

The Development of Modern Digital Imaging

- 13. The first digital imaging technology to be demonstrated, in 1979, was digital ______, using the TV camera signals from image intensifiers.
- 14. "PACS" stands for "______ and _____ system."
- 15. _____ was appropriately dubbed as "cassette-less radiography."
- Compared to film-based radiography, the main advantage of all digital imaging systems is their capacity for ______ of images, which spares repeated exposures to the patient.

Living with Radiation

- 17. Radiation can be broadly divided into three types:
 - 1. _____
 - 2. _____
 - 3.
- 18. One example of #1 above is _____
- 19. One example of #2 above is _____
- 20. One example of #3 above is _____

Additional NOTES:

- 21. To be particularly harmful, radiation must be capable of ______ atoms.
- 22. Nature accounts for about ______ of all radiation we receive.
- 23. Although radiography is defined as a safe profession, radiographers must use good common sense to protect themselves from accumulating unnecessary amounts of radiation and keeping both their own exposure and every patient's exposure *ALARA*, which stands for: ______.

6

Chapter 2

BASIC PHYSICS FOR RADIOGRAPHY

The Base Quantities and Forces

1.	The three standards for measurement are:	Standard Unit:		
	1:			
	2:			
	3:			
2.	The difference between <i>mass</i> and <i>weight</i> is the regardless of its location.	at mass remains		
3.	An example of a derived unit is	, defined as		
4.	The four fundamental forces in the universe are:			
	1			
	2			
	3			
	4			
Additio	onal NOTES:			